
Quality of Service
Modeling and Analysis

for
Carrier Ethernet

Richa Malhotra

Graduation committee:

Chairman: Prof. dr. ir. A.J. Mouthaan

Promotors: Prof. dr. J.L. van den Berg
Prof. dr. M.R.H. Mandjes

Members: Dr. ir. E.A. van Doorn (University of Twente)
Prof. dr. ir. B.R.H.M. Haverkort (University of Twente)
Prof. dr. R.D. van der Mei (CWI/Vrije Universiteit, Amsterdam)
Prof. dr. ir. I.G.M.M. Niemegeers (Technical University of Delft)
Dr. ir. W.R.W. Scheinhardt (University of Twente)
Prof. dr. ir. D. De Vleeschauwer (Alcatel-Lucent/Ghent University)

CTIT Ph.D.-thesis Series No. 08-126
Centre for Telematics and Information Technology
University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands

ISBN 978-90-365-2711-8

Printed by DeltaHage BV, Delft, The Netherlands

Copyright c Richa Malhotra 2008

Most of this research has been sponsored by the Netherlands Organisation for
Scienti�c Research (NWO).

QUALITY OF SERVICE
MODELING AND ANALYSIS

FOR
CARRIER ETHERNET

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,

op gezag van de rector magni�cus,
prof. dr. W.H.M. Zijm,

volgens besluit van het College voor Promoties,
in het openbaar te verdedigen

op vrijdag 31 oktober 2008 om 13.15 uur

door

Richa Malhotra

geboren op 29 maart 1976
te Amritsar (Punjab), India

Dit proefschrift is goedgekeurd door de promotoren
prof. dr. J.L. van den Berg
prof. dr. M.R.H. Mandjes

Acknowledgements

The journey to completing this PhD has not always been an easy one especially
since I did it in combination with my work and family life. I would like to thank all
those people who assisted and supported me in this e¤ort.

Firstly, I would like to thank my promotors for guiding me through the research
and having faith in my determination to complete the thesis. Michel, you helped and
supervised me in spite of your move from Twente to Amsterdam and also during your
stay at Stanford. Hans, I am glad you guided me more frequently. Your multiple
thorough revisions of the thesis were very useful.

Combining my PhD research with my job at Alcatel-Lucent would not have been
possible without the support of my managers. I would like to thank Harold Teunis-
sen, Paul Reinold and Michael Doubrava for supporting my ambition to complete
this thesis.

I would like to express my gratitude to NWO for funding the project, which
assisted me in �nalizing my research and this dissertation. I am especially grateful
to Nick den Hollander who was very helpful in �nding solutions during di¢ cult
and uncertain times. Furthermore, I appreciate Boudewijn Haverkort�s e¤orts for
supporting this project at the University of Twente. I am also thankful to my fellow
project members in the NOBEL, DAIDALOS and EQUANET projects.

My (ex) colleagues at Alcatel-Lucent provided the stimulating environment for
my research. Ronald, we have worked together on many Ethernet related topics and
wrote several papers together. Your support with the simulation environment was
especially useful. Arjan, discussions with you on the practical and standards related
issues for Ethernet were very helpful. Maarten, I bene�ted from your experience
with your PhD, which you did while working at Alcatel-Lucent. I want to thank
you for your advice and willingness to answer any questions I had. I would also like
to thank fellow colleagues from Alcatel-Lucent sales and product units. Discussions
and interactions with them greatly contributed and shaped my understanding of
Ethernet networks in general. Especially Gert Manhoudt, Michiel van Everdingen,
Je¤ Towne and Stephan Roullot were always very open to the innovative ideas we
proposed. I would also like to thank Sue Atkins, Dirk-Jaap Plas, Dennis Bijwaard,
Ronald de Man and my Bell Labs Europe Hilversum colleagues.

For parts of my research I worked together with Werner Scheinhardt and Sindo

v

vi

Núñez Queija. I want to thank them both for the fruitful discussions I had with
them.

I have been a visiting researcher at the DACS group at the University of Twente
for my research. I would like to thank all my colleagues there who made it a
pleasant and productive environment: Pieter-Tjerk de Boer, Lucia Cloth, Desislava
Dimitrova, Tiago Fioreze, Geert Heijenk, Assed Jehangir, Marijn Jongerden, Geor-
gios Karagiannis, Fei Liu, Silvia Meijran, Giovane Moura, Aiko Pras, Anne Remke,
Ramin Sadre, Anna Sperotto and Yimeng Yang.

Friendships and family ties I have built in the Netherlands are very important to
me especially because I came here leaving my own family behind in India. I would
�rst like to express my gratitude to Joke and Rolf Soetbrood. It was their support,
which gave me courage to continue my work here in the Netherlands, in spite of
some very di¢ cult personal circumstances. I would also like to thank my in-laws
and friends for the warm and pleasant gatherings, especially Ans, Pieter, Sylvia,
Willie, Claudia, Anton, Jolanda, Wouter, Nelly, Pranab, Marja, Chetna, Amrish,
Wietze, Lies, Jayanthi, Seshan, Isabelle and Nilesh.

I am grateful to my parents, Kanchan and Jeewan as well as Riti, Suman and
Punit for their unconditional love and support. My father has a special connection
to this thesis. If it were not for his encouragement, I would have never come to
the Netherlands and completed this PhD. My husband Ronald deserves the most
special acknowledgement. Not only have we worked and published papers together
as colleagues, but he has also been extremely supportive on the personal front. I
could always count on him not just for taking over the responsibilities at home but
also for last minute help with reviews, Dutch translations and bug �xes. Finally, I
am thankful to my daughters Deepshikha and Nisha for providing the much needed
break from the frequent stresses resulting from my PhD work.

Contents

1 Introduction 1
1.1 QoS in Carrier Ethernet . 2

1.2 Objective and scope of the thesis . 6

1.3 Organization and contributions . 8

2 Carrier Ethernet 15
2.1 Ethernet switching preliminaries . 15

2.2 Why Ethernet in public networks? 17

2.3 Making Ethernet carrier grade . 18

2.4 QoS drivers . 19

2.5 Remarks on Ethernet QoS research 22

I Tra¢ c policing 25

3 A backpressure based policer 29
3.1 A tra¢ c policing mechanism based on backpressure 30

3.2 Experimental Setup . 31

3.3 Experimental Results and Analysis 32

3.4 Conclusions . 43

4 A dynamic token bucket policer 45
4.1 Token bucket policer . 46

4.2 TCP Performance with token bucket policing 46

4.3 Drawbacks of a large static bucket size 50

4.4 A dynamic bucket size policer . 51

4.5 Simulation results . 53

vii

viii CONTENTS

4.6 Conclusions . 57

II Congestion control 59

5 Interaction of Ethernet and TCP congestion control 63

5.1 IEEE 802.3x hop-by-hop and TCP end-to-end �ow control 64

5.2 Integrated model of hop-by-hop and end-to-end �ow control 67

5.3 Simulation model and mapping parameters 70

5.4 Results . 71

5.5 Conclusions . 76

6 A �uid queue model of Ethernet congestion control 79

6.1 Model . 81

6.2 Analysis . 84

6.3 Numerical example . 96

6.4 Concluding remarks . 98

7 Design issues of Ethernet congestion control 99

7.1 Model and preliminaries . 100

7.2 Performance metrics . 102

7.3 Numerical experiments . 105

7.4 Design issues . 110

7.5 A model for higher aggregation levels 111

7.6 Concluding remarks . 113

III Scheduling 115

8 Integrating elastic tra¢ c with prioritized stream tra¢ c 119

8.1 Model . 120

8.2 Analysis of high priority tra¢ c . 121

8.3 Analysis of low priority tra¢ c . 122

8.4 Results . 126

8.5 Conclusions . 133

CONTENTS ix

Concluding remarks 137

Samenvatting 141

Acronyms 145

Bibliography 147

Publications and patents by the author 155

Chapter 1

Introduction

Until the early 1990s, networks were dominated by TDM switching and transmis-
sion. ATM and SONET were new, and the Internet was in its infancy. Ethernet was
a Local Area Network (LAN) technology, and ATM was supposed to displace Ether-
net all the way to the desktop. Today�s networking landscape is quite di¤erent from
that vision. Rather than ATM to the desktop, the reverse has happened. Ethernet
which was predominantly a LAN technology has started to penetrate as a transport
technology ��rst in the metropolitan area, then in access and core networks. The
success of Ethernet is probably best demonstrated by its increasing revenues despite
the recent downturn in the telecommunications market. Worldwide Ethernet equip-
ment revenues have increased from $2.5 billion in 2004 to $13 billion in 2007 and
are expected to reach $16 billion by 2010 ([33]). ATM switch revenues on the other
hand have declined from $5 billion in 2000 to $1.3 billion in 2006 ([34]).

Ethernet initially played an important role in the emergence of the metropolitan
area networking market where its use gave it the name Metro Ethernet. It provided
an easy and cheap way to interconnect for example multiple sites of the same enter-
prise by means of a Virtual LAN (VLAN) giving the end user the illusion of being
on the same LAN. A similar VLAN could also be realized between a residential end-
user and his Internet Service Provider (ISP) providing high speed Internet access as
shown in Figure 1.1.

Today, Ethernet is moving into the mainstream evolving into a carrier grade
technology. Termed as Carrier Ethernet it is expected to overcome most of the
shortcomings of native Ethernet. It is envisioned to carry services end-to-end serving
corporate data networking and broadband access demands as well as backhauling
wireless tra¢ c as shown in Figure 1.2.

As the penetration of Ethernet increases, the o¤ered Quality of Service (QoS)
will become increasingly important and a distinguishing factor between the di¤erent
service providers. The challenge is to meet the QoS requirements of end applications
such as response times, throughput, delay and jitter by managing the network re-
sources at hand. Since Ethernet was not designed to operate in large public networks

1

2 1 Introduction

Company A

site 1

Metropolitan

network

Company A

site 2

Residential
AreaCompany A

site 3

VLAN A

VLAN B

Corporate transparent LAN
Residential

Internet access

Metro
Ethernet

Bridge

Metro
Ethernet

Bridge

Metro
Ethernet

Bridge

Access
Ethernet

Bridge

ISP
(Internet

Service
Provider)

Access
Ethernet

Bridge

Access
Ethernet

Bridge

Access
Ethernet

Bridge

Company A

site 1

Metropolitan

network

Company A

site 2

Residential
AreaCompany A

site 3

VLAN A

VLAN B

Corporate transparent LAN
Residential

Internet access

Metro
Ethernet

Bridge

Metro
Ethernet

Bridge

Metro
Ethernet

Bridge

Access
Ethernet

Bridge

ISP
(Internet

Service
Provider)

Access
Ethernet

Bridge

Access
Ethernet

Bridge

Access
Ethernet

Bridge

Figure 1.1: Metropolitan Ethernet Network.

it does not possess functionalities to address this issue. In this thesis we propose
and analyze mechanisms which improve the QoS performance of Ethernet enabling
it to meet the demands of the current and next generation services and applications.

In the rest of this thesis we use the terms Carrier Ethernet and Metro Ethernet
interchangeably. This is because the research presented in this thesis, on one hand,
improves Ethernet and helps it become carrier-class and on the other hand, its
applicability is not restricted to the size or extent of the network (metro, access or
core).

This introductory chapter further on presents the context of our research, posing
the research questions to be addressed and outlining the objective, scope, structure
and contributions of the thesis. The technological details of Carrier Ethernet are
presented in Chapter 2.

1.1 QoS in Carrier Ethernet

The success of Carrier Ethernet depends greatly on its ability to live up to the
QoS demands of the applications delivered over it. In this respect, the inherent
variations in user tra¢ c cause unpredictable congestion patterns and pose di¢ culties
for QoS provisioning. E¤orts are underway to address this issue for Carrier Ethernet.
However, still many challenges remain, which have to be overcome ([19]). In this
section we address the status of QoS features in Ethernet (in Section 1.1.1), identify
what is still missing, and mention which of these missing elements will be studied

1.1 QoS in Carrier Ethernet 3

Figure 1.2: Metro Ethernet forum�s vision for Carrier Ethernet (source [20]).

in this monograph (in Section 1.1.2).

1.1.1 Current state

In this section we present the QoS features currently available and enforced by
standardization bodies for Carrier Ethernet. These QoS attributes focus on building
customer con�dence in Ethernet, which is extremely important at the current stage
of Ethernet deployments. This is done primarily by enabling the formalization of
strict performance agreements for di¤erent Ethernet services and making the service
provider accountable for them. Following are the QoS features which should be
available in current Carrier Ethernet products.

� Class of Service: Class of service refers to the classi�cation of tra¢ c into
multiple classes or groups. For Carrier Ethernet this is possible with the p-
bits in the Ethernet frame header as explained in [73]. Once tra¢ c is classi�ed
into separate groups, it can then be treated di¤erently depending on its QoS
requirements.

� Service Level Agreements (SLAs): A SLA is a commercial agreement binding
both the service provider and its customer to a speci�ed level of service. In
Carrier Ethernet it should currently be possible to de�ne bandwidth pro�le
attributes such as the tra¢ c rates and maximum burst sizes per customer as
part of its SLA. Furthermore, service performance attributes such as packet

4 1 Introduction

delay, packet delay variation and packet loss ratio should also be supported
(see MEF�s certi�cation rules, [21]).

� Operation, Administration and Management (OAM): OAMmethods are mon-
itoring functionalities which report on the performance achieved by customer
tra¢ c streams. These results can then be compared to the SLA to assess if
the service provider has lived up to its promised targets. If not, this can be
incorporated in the pricing and billing options for the customer. This OAM
functionality has been standardized [65] and service providers claiming to use
Carrier Ethernet should support it.

1.1.2 Missing QoS elements

The SLAs and the OAM methods are essential in building the customer�s con�dence
in using Ethernet services, as they make the service provider liable for the delivered
performance. However, they fail to answer a critical question:

If the OAM methods show that the performance targets agreed in the
SLAs are not being met, what actions can the service provider take to
�x this?

In order to deal with this issue, the service provider needs tools and techniques
to optimize and tune the operation of his network to ensure that the SLAs can be
guaranteed. In this respect, the list of QoS features presented in Section 1.1.1 is
incomplete.

In this section we assess which QoS features are still missing in Carrier Ethernet
today and mention the ones which will be researched in this thesis. For this purpose,
we review a general QoS framework for packet technologies in Figure 1.3 (from
[35]). This lists the complete set of mechanisms required for QoS provisioning and
is organized into three logical planes: control, management and data plane.

The control plane mechanisms deal with the pathways that carry the user data
tra¢ c. It includes admission control, QoS routing and resource reservation mech-
anisms. Admission control refers to the act of accepting or rejecting a user tra¢ c
connection based on a particular policy. QoS routing refers to �nding a path for
each tra¢ c connection such that its quality requirements can be met. And resource
reservation is the act of reserving network resources once a tra¢ c connection has
been accepted by admission control.

The management plane functionalities deal with operation, administration and
management aspects of user tra¢ c. It includes metering, policy, SLAs and service
restoration mechanisms. SLA has already been de�ned in Section 1.1.1. Metering
involves monitoring the tra¢ c streams against the tra¢ c pro�le that is usually
speci�ed in the SLA. Policy is a set of rules which helps decide on the admission of

1.1 QoS in Carrier Ethernet 5

Traffic
Classification

Control Plane

Data Plane

Admission
control

Traffic
Policing

Traffic
Shaping

Packet
Marking

Queuing
Scheduling

Buffer
Management

Congestion
Control

QoS
Routing

Resource
Reservation

Management P
lane

Servic
e

Level

Agreements

Meterin
g

Policy

Servi
ce

Resto
ratio

n

Traffic
Classification

Control Plane

Data Plane

Admission
control

Traffic
Policing

Traffic
Shaping

Packet
Marking

Queuing
Scheduling

Buffer
Management

Congestion
Control

QoS
Routing

Resource
Reservation

Management P
lane

Servic
e

Level

Agreements

Meterin
g

Policy

Servi
ce

Resto
ratio

n

Traffic
Classification

Control Plane

Data Plane

Admission
control

Traffic
Policing

Traffic
Shaping

Packet
Marking

Queuing
Scheduling

Buffer
Management

Congestion
Control

QoS
Routing

Resource
Reservation

Management P
lane

Servic
e

Level

Agreements

Meterin
g

Policy

Servi
ce

Resto
ratio

n

Figure 1.3: QoS building blocks.

new users or customers in the network. Service restoration relates to methods for
recovery consequent to a failure in the network.

The data plane mechanisms deal directly with user tra¢ c. Tra¢ c classi�cation
relates to the ability to classify incoming tra¢ c into multiple classes or groups (see
also Section 1.1.1). Bu¤er management involves deciding on which of the packets,
awaiting transmission, should be dropped or stored. queueing and scheduling deals
with the selection and ordering of data packets for transmission on the outgoing link.
In combination with tra¢ c classi�cation this leads to division of network bandwidth
among the di¤erent tra¢ c classes. Congestion avoidance controls the tra¢ c load
such that it remains below the network capacity. Packet marking involves marking
data out of the SLA tra¢ c pro�le. Tra¢ c shaping regulates the rate of tra¢ c leaving
a node. Tra¢ c policing involves monitoring and enforcing the tra¢ c limit agreed
upon in the SLA at the edge nodes of the network.

In this thesis we focus on the data plane mechanisms for a typical Metro Ethernet
network (as shown in Figure 1.4). This is because a thorough understanding of
the performance at the data plane is needed to develop provisioning methods and
guidelines. These methods and guidelines can then be used for network planning
by exploiting the management and control plane functionality. For example, insight
into the in�uence of network and tra¢ c parameters on performance can result in
network provisioning tools or included as policy and admission control decisions.

It is important to note that an alternative approach exists for QoS provision-
ing, i.e., without using the mechanisms mentioned above. Over-dimensioning of
resources ensures that enough bandwidth is available for all data transport all the
time. The basic idea behind this approach is that if the available resources are

6 1 Introduction

Ingress Egress

Traffic Policing
Packet Marking

Traffic Classification
Queuing Scheduling
Congestion Control
Buffer Management

Access
Network

Access
Network

Queuing Scheduling
Congestion Control
Buffer Management

Traffic Shaping
Queuing Scheduling
Congestion Control
Buffer Management

Metropolitan Ethernet Network

Ingress Egress

Traffic Policing
Packet Marking

Traffic Classification
Queuing Scheduling
Congestion Control
Buffer Management

Access
Network

Access
Network

Queuing Scheduling
Congestion Control
Buffer Management

Traffic Shaping
Queuing Scheduling
Congestion Control
Buffer Management

Metropolitan Ethernet Network

Figure 1.4: Mapping of data plane QoS mechanisms onto a Metro Ethernet Network.

abundant, then congestion will never occur and QoS will not be compromised. This
method is simple and straightforward and works well in core networks, where large
aggregate data streams are relatively smooth. However, in access and metro net-
works, tra¢ c is more bursty causing frequent and unpredictable bottlenecks making
over-dimensioning uneconomical as noted in [23].

1.2 Objective and scope of the thesis

Ethernet was not designed to be deployed as a transport technology, therefore, it is
not surprising that the current QoS model for Ethernet is not appropriate to meet
the demands of the next generation applications ([7]). The main research question
in this respect is

How and to what extent should Ethernet technology evolve to meet the
QoS requirements of current and future services and applications, while
retaining its original bene�ts of being simple and inexpensive?

The question above requires the resolution of the following issues:

� Which QoS mechanisms need to be enhanced to make this transition and how?

� Is it possible to reuse some existing functionality in standard Ethernet?

� Given a set of QoS mechanisms in a Metro Ethernet Network (MEN), what is
the QoS performance which can be promised to various MEN customers?

1.2 Objective and scope of the thesis 7

� How do the various network and tra¢ c parameters in�uence this performance?
Which network parameters can be tuned (and how) to achieve a desired per-
formance target?

In relation to the questions above, we formalize the following objective for this
thesis:

To analyze existing QoS mechanisms, and develop new mechanisms
where necessary, that improve the performance of Ethernet and higher
(end-user) layer applications.

We aim at analyzing the performance not just at the Ethernet layer but also at
(higher) application-layer as this is useful in understanding what a SLA at Ethernet
level means for an end-user. By applying or developing new modeling techniques, we
aim at obtaining generic results and guidelines quantifying the in�uence of network
and tra¢ c parameters on QoS performance. This will assist the optimal deployment
of Ethernet services in access, metro and core networks. Where possible we will try
to base the design of new mechanisms on existing functionality in Ethernet. This
will ensure that the QoS improvements do not come at high costs, thus retaining
the original bene�t of Ethernet.

Scope

In this thesis we address three key QoS mechanisms, which are essential in o¤ering
and meeting performance guarantees. These are:

� Tra¢ c policing

� Congestion control

� Scheduling

The mechanisms which we decided not to study in detail in this thesis are tra¢ c
shaping, bu¤er management, packet marking and tra¢ c classi�cation (see Figure
1.4). We remark that tra¢ c shaping and Random Early Detection (RED) based
bu¤er management techniques have been extensively researched in literature in the
context of other packet technologies. Packet marking and tra¢ c classi�cation in
Ethernet are restricted by the 3 bits available in the packet header, providing lim-
ited possibilities. For example, if 1 bit is used for marking in and out of SLA pro�le
packets, the remaining 2 bits would allow for only 4 tra¢ c classes. Further informa-
tion on the usage of these bits is provided in [75]. In view of these considerations,
we have chosen to not include research on these issues in this monograph.

With respect to the QoS mechanisms chosen within the scope of this thesis, one
might wonder what their relation is to existing solutions for other packet networking

8 1 Introduction

technologies (such as IP and ATM). It is important to note that every packet tech-
nology has its own distinct features and its QoS mechanisms are designed exploiting
these features. For example, ATM is a connection-oriented technology and its QoS
mechanisms make use of the possibility of control on each connection. IP, although
connectionless in nature, has a rather intricate addressing and routing scheme asso-
ciated with it. Its QoS mechanisms can use the knowledge of location provided by
the source and destination address of a data packet. Ethernet on the other hand
is a connectionless technology with a �at addressing and routing scheme. These
aspects on one hand make it simple, plug-and-play and cheap. On the other hand,
however, they pose challenges for introducing QoS capabilities. Therefore, the QoS
mechanisms designed for packet technologies such as ATM and IP cannot be directly
applied to Ethernet because it lacks their inherent features. Furthermore, not all
QoS mechanisms for other packet technologies are in a stage to meet the challenge
we have at hand.

Despite the above considerations we remark that some of the proposed methods
and analysis in this thesis can also be applied to other packet technologies. This
is especially true for methods presented in this thesis that do not rely on Ethernet
speci�c hardware. Furthermore, a large part of this thesis focuses on analytical
modeling of Ethernet QoS functionality. Although these models have been inspired
by Ethernet, they can be broadly applied to similar mechanisms for other packet
technologies. A more detailed discussion on this issue is provided in Section 1.3 and
the relevant chapters of this thesis.

1.3 Organization and contributions

Having outlined the objective and the scope of our research, the organization of
the rest of the thesis is as follows. In Chapter 2, we provide more technological
details on Carrier Ethernet. We review some basic Ethernet switching concepts
and speci�cally address the services and applications which are being deployed and
o¤ered with it and the need for QoS therein. The main technical contributions of the
thesis are organized into three parts, each dedicated to one of the QoS mechanisms
within the scope of the thesis. The thesis ends with some concluding remarks.

In the remainder of this section, we address the main parts of the thesis in more
detail. For each of the three QoS mechanisms we present the research questions
and then point out how this thesis contributes to resolving them. The research
questions presented in this section focus on the speci�c issues for the considered
QoS mechanisms and di¤er from the more high level and general questions raised
in Section 1.2, which apply to all QoS mechanisms. We have tried to minimize the
overlap between this section and other parts of the thesis. However, since our goal
was to keep the chapters self-contained, some amount of repetition was unavoidable.

1.3 Organization and contributions 9

1.3.1 Part I - Tra¢ c policing

Tra¢ c policing is the method used to monitor and enforce the bandwidth pro�les
agreed in the SLA as explained in Section 1.1.2. A (bu¤erless) token bucket is widely
used for this purpose as it is simple and inexpensive as compared to a leaky bucket
due to absence of bu¤ering. However, tra¢ c using the higher layer Transport Control
Protocol (TCP) is known to have serious performance problems with a token bucket
policer ([90]). This is primarily due to the fact that TCP�s �ow control mechanism
was designed to deal with dynamic congestion in networks. Its enduring yet futile
attempts to grab more bandwidth than the �xed contractual tra¢ c rate results in
continuous collapse of its transmission window. This results in throughputs far
below the contractual rate. In this respect the following questions arise.

Research questions

� How can an operator of a MEN ensure that the policing mechanism at the
ingress of its network on one hand enforces the SLA while at the same time
does not jeopardize higher application level performance?

� Is a cost-e¤ective solution possible, which does not incorporate expensive bu¤er
upgrades to shape tra¢ c to the contractual tra¢ c rate?

Contributions of the thesis

In the thesis we propose two policing methods to address the issues raised above and
assess their impact on data tra¢ c which uses TCP and real-time streaming tra¢ c
which uses UDP:

� In Chapter 3 (based on [47]), we present and analyze an Ethernet policer which
provides feedback to the MEN customer network on SLA violation. The use
of this mechanism results in bu¤ering at the customer side equipment which
resolves the TCP performance problem by itself. Furthermore, it also works
well for prioritized UDP tra¢ c.

� In Chapter 4 (based on [83]), we present and analyze a dynamic token bucket
policing mechanism. This method adapts to the variations in customer tra¢ c
including those due to changes in TCP�s transmission window. This results in
TCP throughputs close to the contractual tra¢ c rate. For constant rate UDP
tra¢ c the policer�s bucket size, as to be expected, remains unchanged.

Both policing methods have been extensively analyzed using network simulations
and experiments. The simulator not only models the capabilities of an Ethernet
switching node but also details of the TCP stack.

10 1 Introduction

Relation to other packet technologies

The policing method in Chapter 3 exploits Ethernet speci�c functionality, which is a
novelty over previous literature. Applying this method to other packet technologies
would require introduction of feedback messaging in the hardware. The mechanism
in Chapter 4 does not use Ethernet speci�c features and can be directly applied to
any packet technology. Although tra¢ c policing has been widely studied for other
packet technologies, the previous work ([40], [12]) has not managed to con�gure
the token bucket parameters independently of the policed tra¢ c pro�le as done in
Chapter 4.

1.3.2 Part II - Congestion control

In the second part of the thesis we address the issue of congestion control for Ethernet
networks. We do so by exploring the congestion control possibilities already provided
in traditional Ethernet. The IEEE 802.3x standard ([76]) de�nes a pause mechanism
or a backpressure signal to enable congestion noti�cation messages. A congested
node can send a backpressure/pause message to its upstream neighbors to signal the
stop of all transmission towards it for a period of time. Alternatively, an ON/OFF
pause message can be sent signaling the beginning and end of the transmission
pause phase. Within an Ethernet network the use of this signal results in a hop-
by-hop congestion control method. Most of the previous work on the analysis of
this scheme has concentrated on the protocol and its implementation aspects. The
relation between the QoS performance and the key parameters of the backpressure
mechanism has not been established. In this respect the following questions still
remain to be answered.

Research questions

� What is the e¤ect of the backpressure parameter settings such as congestion
detection thresholds and bu¤er sizes on throughput and delay performance?

� Can the congestion thresholds be used to optimize or achieve the desired trade-
o¤ between throughput and delay?

� How does this performance depend on di¤erent scenarios and tra¢ c types?

Contributions of the thesis

In this thesis we present two stochastic models of the backpressure congestion control
mechanism focusing on two di¤erent aspects of the scheme:

� In Chapter 5 (based on [48]) we model the interaction of TCP end-to-end
congestion control with Ethernet hop-by-hop congestion control. We do so by

1.3 Organization and contributions 11

introducing a stylized Markov model. The model speci�cally captures the hop-
by-hop nature of backpressure congestion control with two queues in tandem.
The solution of the proposed model is compared to the results obtained by
simulations. The analysis provides useful insight into the in�uence of key
parameters such as bu¤er sizes, congestion detection thresholds, round trip
times and tra¢ c burstiness on the performance as a result of the interaction
between TCP and Ethernet.

� In Chapter 6 (based on [45]) we develop and solve a �uid queue model of
the Ethernet congestion control mechanism. Fluid queues abstract from the
details at packet level by approximating the �ow of packets by �uid �owing at
a constant rate. The �uid model we propose focuses on the feedback aspects of
the backpressure mechanism rather than its hop-by-hop behavior. Our explicit
solution of the model provides the relation between performance measures
(such as throughput and delay), congestion detection thresholds and tra¢ c
(rate) parameters. This is especially useful for tuning network parameters to
achieve desired QoS performance.

� In Chapter 7 (based on [44]) we present an extensive numerical study of the
model analyzed in Chapter 6. In particular, we address an essential design
issue for the backpressure mechanism by studying the e¤ect of the congestion
control thresholds on tra¢ c performance measures such as �le transfer time for
data �les as well as throughput and delay for real-time applications. Numerical
experiments are performed to evaluate the main trade-o¤s such as the trade-o¤
between the signaling overhead and the achieved throughput.

Relation to other packet technologies

The basic idea behind the IEEE 802.3x hop-by-hop congestion control mechanism
exists in ATM as well as part of its Available Bit Rate (ABR) transport capability
([57], [39]). However, since ATM is a connection-oriented technology it allows for a
lot more control. Unlike the ON/OFF mechanism in Ethernet, the hop-by-hop con-
gestion control functionality in ATM is achieved through �ne-grained information
in the Resource Management (RM) cells. These cells can continuously increment or
decrement the tra¢ c rate of each connection in small steps. As a consequence, most
of the research on congestion control for ATM builds on and optimizes the use of
these RM cells ([59], [62]). Although this mechanism can be expected to provide bet-
ter performance than the Ethernet ON/OFF tra¢ c control, it is extremely complex
to implement and sustain. Therefore, we have chosen to build on and investigate
the functionality which is currently available in Ethernet. This not only enables the
immediate applicability of our research in current Ethernet networks but also comes
at low costs as it does not require new hardware.

Current congestion control work for IP networks concentrates mainly on Explicit

12 1 Introduction

Congestion Noti�cation (ECN) [25] and Random Early Detection (RED) [27] like
mechanisms. The idea of hop-by-hop congestion control does not currently exist in
IP but could be easily incorporated. Nevertheless, the �uid queue based analytical
models presented and analyzed in this thesis could also be used to model ECN, RED
and other enhancements and variations being proposed to Ethernet backpressure
based congestion control ([29], [50]).

1.3.3 Part III - Scheduling

In the third part of the thesis we address the issue of dividing the outgoing link
capacity over the multiple tra¢ c classes supported in Ethernet. Priority queueing,
weighted fair queueing and their combinations have been proposed in literature for
this purpose and can be applied to Ethernet as well. No matter which variant is
chosen, it seems inevitable to provide highest and strict priority to the time-sensitive
tra¢ c class in order to satisfy its strict delay requirements as shown in [38]. The
danger with allocating strict priority to a particular tra¢ c class is that it can starve
the lower priority tra¢ c classes. The network operator has to ensure that on one
hand it meets the strict delay requirements for time-sensitive stream tra¢ c while
still satisfying the throughput guarantees agreed in the SLAs for the time-insensitive
but loss-sensitive tra¢ c. In this respect the following questions arise.

Research questions

� To what extent should the load of the strict high priority tra¢ c be controlled
so as to avoid starvation of low priority tra¢ c?

� Given a particular load of high priority streaming tra¢ c, what performance
can be guaranteed to lower priority tra¢ c?

Contributions of the thesis

In order to answer the questions raised above, we need to model the division of link
bandwidth among multiple tra¢ c-class �ows. A special class of queueing systems,
called Processor Sharing (PS) queues ([88]) are especially useful in modeling such
cases. PS queues model systems in which the available capacity is divided equally
among all active �ows. Extensions proposed to traditional PS queues allowing for
priority systems are di¢ cult to analyze and no closed-form formulas exist. In Chap-
ter 8 (based on [46]), we approximate a prioritized queueing system with mixed
tra¢ c types with an adapted PS model. We evaluate the accuracy of the proposed
PS model to the prioritized model. The results show that our simple approximation
works quite well for a wide range of parameter values.

1.3 Organization and contributions 13

Relation to other packet technologies

In Chapter 8, we address scheduling issues which are generic and can be applied
to any packet technology. To the best of our knowledge, the simple yet e¤ective
approximations presented in this chapter are not available within the existing QoS
literature for IP or ATM.

Chapter 2

Carrier Ethernet

In this chapter we describe Carrier Ethernet in more detail than in Chapter 1, pay-
ing special attention to the QoS issues therein. However, we begin the chapter with
some essentials of Ethernet switching in Section 2.1. This section enables the reader
to understand and identify the inherent features of Ethernet, which distinguish it
from other packet technologies and therefore explain the context of this thesis. In
Section 2.2 we discuss the reasons behind the popularity of Ethernet as a transport
technology. This is followed by the drawbacks of native Ethernet explaining the
need for Carrier Ethernet in Section 2.3. A brief overview of the basic characteris-
tics of Carrier Ethernet is also provided. We then focus on the importance of QoS
for Carrier Ethernet networks and the drivers behind it in Section 2.4. In partic-
ular, we discuss the kind of applications being deployed by Carrier Ethernet. We
also discuss the role of QoS in improving the cost-e¤ectiveness of Ethernet network
deployments. We end the chapter with positioning the research presented in this
thesis in relation to other work in literature primarily focused on improving QoS for
Ethernet networks.

2.1 Ethernet switching preliminaries

In this section we explain how packet switching works in Ethernet on a high level.
It is important to note that Bridged or Switched Ethernet is di¤erent from Shared
Ethernet, where a collision domain exists. In this section we restrict ourselves to
switched Ethernet, as this is particularly relevant for this thesis.

A switched Ethernet network is shown in Figure 2.1. The switches in this network
are connecting end-stations directly as well as (shared) Ethernet LANs. The end-
stations as part of a shared Ethernet LAN are interconnected via a hub. Each
Ethernet switch and end-station has its own unique MAC (Medium Access Control)
address which is used to route data to it. In order to understand how a packet
is transmitted in such a network let us follow a packet sent from source S1 to

15

16 2 Carrier Ethernet

Figure 2.1: A switched Ethernet network.

destination D1. The arrows indicate the path followed by this packet. The packet
from S1 will reach all the stations in its LAN as well as sent to switch A and B. Both
switches A and B will learn through which one of their ports S1 can be reached.
Since initially, neither does switch A nor B know where D1 resides, the packet will be
sent everywhere and all stations in Figure 2.1 will receive the packet meant for D1.
On receiving this packet, the stations will see that the destination address does not
match their own address and they will discard the packet except for D1. The white
(blank) packets in Figure 2.1 indicate that the receiving end-station drops the packet.
The dark red packets indicate that the packet is not dropped by the station or switch.
This type of packet transfer is called unknown unicast packet transfer, which results
in the packet being broadcast to all stations connected to the network. If D1 sends
a packet back to S1, the switches will learn the address of D1 and through which
of their ports it can be reached. As a consequence further transmission between S1
and D1 will not reach all the end-stations but will be restricted to the path followed
by the dark red packets. However, the learnt addresses are �ushed from memory
periodically. Therefore, if S1 and D1 do not communicate for a while then new
transmissions between them would again lead to broadcast tra¢ c. This explains the
broadcasting based routing of packets in Ethernet as opposed to more formal path
calculation per tra¢ c stream in IP.

Another aspect associated with Ethernet�s method of routing is the possibility
of packet duplication and multiplication when loops are present in the network
topology. For this reason all Ethernet networks need to create a logical tree, free
of loops, on which tra¢ c can be routed and �ooded. The protocol used to create
this tree connecting the entire network is called the Spanning Tree Protocol (STP).

2.2 Why Ethernet in public networks? 17

Figure 2.1 shows the spanning tree in thick lines. The dotted line is a blocked
link which is unused. If the link between Switch-A and Ethernet LAN-1 fails, the
blocked link can be activated again by the STP, which recalculates the tree in the
event of a failure. The network created by the spanning tree connecting multiple
LANs is called a VLAN. All the end stations that are part of this VLAN experience
themselves as being on the same LAN. Another interesting property of such a VLAN
is that if a new station is included in one of the Ethernet LANs, it automatically
joins the whole VLAN. This gives Ethernet its plug and play operation.

It is possible to create multiple VLANs for the network shown in Figure 2.1,
for example one between L1 and Ethernet LAN-1. Each such VLAN has its own
broadcasting domain. Ethernet switches do not route packets from one VLAN to
another and tra¢ c within di¤erent VLANs is kept separated. In this way one can
create multiple and distinct broadcasting domains. This simple concept of a VLAN
extends to creating virtual private networks (VPNs) for enterprises or high speed
internet connections between end-users and their ISPs as shown in Figure 1.1.

2.2 Why Ethernet in public networks?

Among all the packet technologies available, why is Ethernet such a popular choice
among service providers for data transport? In this section we address this ques-
tion by explaining the reasons and some inherent features of Ethernet, which have
triggered its selection.

� Wide presence in LANs: Ethernet today constitutes 97% of all LAN traf-
�c. Introducing Ethernet based transport further on in the network helps
avoid expensive and unnecessary protocol translations. It can be installed as
a backbone network while retaining the existing investment in Ethernet hubs,
switches and wiring plants.

� Increasing data rates: Over the past years, Ethernet has evolved to support
greater speeds and distances. Ethernet data rates have climbed from 10 Mbps
to 10 Gbps and continue to grow at a steady rate making it suitable for data
transport in larger networks. Current developments are moving to 40 and 100
Gbps and this is expected to be standardized in 2010.

� Plug and Play: Since Ethernet was originally designed for LANs, it inherently
possesses plug and play operation as explained in the previous section. A
new device or station associated with a new user for instance, just needs to
be added to a VLAN. Therefore, it does not require extensive provisioning as
compared to IP. As a result con�guring and provisioning Ethernet VPNs is
simpler than IP VPNs.

18 2 Carrier Ethernet

� Inherent broadcasting capabilities: Unlike IP, Ethernet has inherent broadcast-
ing capabilities as explained in Section 2.1. This is useful not only for creating
VPNs but also for broadcasting applications such as IPTV.

� Low costs: The reasons behind the low costs of Ethernet are many. Ethernet
interfaces are cheap. Using Ethernet in metropolitan area and beyond means
that the equipment used in LANs does not have to be replaced and helps
save on upgrade costs. It is also a simple technology that does not require
extensive provisioning. Furthermore, since it is a packet technology it can
multiplex multiple data streams on the existing circuit-infrastructure, helping
provide services at low costs to the end-user.

2.3 Making Ethernet carrier grade

Ethernet technology was originally designed to work in small LANs. Therefore, it is
not surprising that its extension into larger metro and wide area networks raises a
number of concerns. For example, native Ethernet has a limit of 4096 VLANs. Since
every customer gets his own VLAN, this limit imposes a restriction on the scalability
of Ethernet. Network topology recalculation subsequent to a failure is done using
the STP, which does not live up to the 50 ms restoration time that operators are
used to with SDH/SONET. Furthermore, this protocol does not make e¢ cient use
of available bandwidth. Native Ethernet also lacks a QoS architecture to provide
certain performance guarantees.

Carrier Ethernet overcomes most of the concerns of native Ethernet. It is de-
�ned as being ubiquitous, standardized carrier-class service with �ve distinguishing
attributes: scalability, standardized services, service management, reliability and
QoS. Although many of these attributes are receiving attention in standards, many
hurdles still need to be overcome ([19]) to make Ethernet a true carrier class tech-
nology. Below we brie�y address the current state for each of the �ve attributes of
Carrier Ethernet.

� Scalability: The most important scalability issue due to limited number of
VLANs is being addressed in the standards. Tunneling technologies such as
MPLS and Provider Backbone Bridges ([71]) provide the possibility to ag-
gregate Ethernet MAC addresses. These solutions are expected to provide
carrier-class scaling of Ethernet networks and are further explained in the
IEEE 802.1ah draft.

� Standardized services: Carrier Ethernet comes with all attributes closely sup-
ported by standardized services. The MEF, ITU and IEEE are striving to stan-
dardize di¤erent functionalities aimed at improving Ethernet. Among other
aspects they are addressing how the various Ethernet service types should be
deployed and what kind of performance guarantees they should ful�ll.

2.4 QoS drivers 19

� Service Management : The attribute of service management ([11], [43]) is di-
rected at providing the possibility to identify and manage failures of links as
well as monitor performance and connectivity aspects of services. This can
help the service provider to check and show if the agreed upon SLAs are being
met and to identify problems as explained in Section 1.1.1.

� Reliability: The traditional STP designed originally in 1993 for native Ethernet
had several limitations with respect to the convergence time and its utilization
of network bandwidth. Fortunately, multiple ([75]) and rapid ([74]) spanning
tree protocols are already a considerable improvement to this protocol and
overcome many of its drawbacks.

� Quality of Service: The QoS aspects of Carrier grade Ethernet have already
been addressed in Chapter 1. Section 1.1.1 presents an overview of the QoS
possibilities in Carrier Ethernet today, whereas Section 1.1.2 points out what
is still missing. This thesis focuses on some of these missing elements, thereby
addressing some essential QoS challenges faced by Carrier Ethernet.

2.4 QoS drivers

In this section we further motivate the need for QoS in Carrier Ethernet. This
demand is driven by two challenges faced by Carrier Ethernet. Firstly, it should
be able to satisfy application requirements and user perception. Secondly, Carrier
Ethernet should retain and improve cost-e¤ectiveness of current and future network
deployments. In this section we discuss in more detail the applications for which
Ethernet networks are being used and the demands they impose. We also discuss
typical Ethernet deployments, their relative costs due to the extent of multiplexing
and complexity with respect to QoS issues.

2.4.1 Application demands

A variety of applications are being supported by Carrier Ethernet networks. Each
of them imposes their own requirements which we discuss here.

� Enterprise networks: The enterprise market needs to connect its worldwide
workforce while reducing operating costs and simplifying management and
administration. While Ethernet �ts very well in this market due to its inherent
broadcasting capabilities, low costs and familiarity, it has to live up to the
demand for guaranteed bandwidth performance. Enterprises which pay for a
particular bandwidth to create their VPNs, want to be assured that they �get
what they pay for�.

20 2 Carrier Ethernet

� Residential triple play: A triple play service is the combined delivery of high-
speed Internet access, television and telephone over a single broadband con-
nection. Delivering residential triple play services using Ethernet networks
requires Ethernet to support not only high peak bandwidth but also priority
voice, high de�nition and on demand video services. Delay, jitter and through-
put requirements should be met for both voice and video tra¢ c. Satisfying
the requirements of such services per customer undoubtedly requires proper
QoS support in Ethernet.

� Wireless backhaul tra¢ c: Mobile broadband services and applications are be-
ing widely adopted worldwide. This is expected to lay immense pressure on the
transport capacity between base stations and core networks. Carrier Ethernet
should provide a cost-e¤ective way to transport this increasing tra¢ c volume.

� Service convergence: The data communications industry is entering an era
of service convergence. Services will be managed and o¤ered over any access
network. This requires Ethernet networks to be compatible and integrate
with a generic control plane. In this respect, Ethernet should at least support
techniques for estimation of its available QoS resources and admission control
of new services.

2.4.2 Improving cost-e¤ectiveness

In this subsection we explain the impact of the various Ethernet service connec-
tivities on the cost-e¤ectiveness of the technology and its QoS issues. Ethernet
connectivity comes in di¤erent �avors. �Virtual�or �Private�refers to the extent of
sharing of networks resources. �Line�or �LAN�, is the choice between point-to-point
and multipoint-to-multipoint connectivity. The more shared the connectivity the
more the gain from statistical multiplexing and therefore more cost-e¤ective the
o¤ered Ethernet service. However, the more shared the service, the greater is the
need for QoS mechanisms to ensure the performance guarantees for each user.

� Virtual vs Private: �Virtual�refers to shared and �Private�refers to dedicated
and reserved bandwidth. When speci�c bandwidth is reserved for a customer
whether he uses it or not is called private. When bandwidth is shared among
multiple customers the connectivity is called virtual private. Tra¢ c of each
customer is kept separate by con�guring a VLAN per customer, however the
di¤erent VLANs do share the underlying network capacity (see Figure 2.2).
This capacity could be a SDH/SONET circuit, WDM channel or an MPLS
path/pseudowire etc. It is obvious that the private approach is expensive
because the service provider cannot use this bandwidth for other purposes.
Virtual service on the other hand multiplexes tra¢ c from multiple customers
onto the same link bandwidth. Therefore, the same resource can be shared

2.4 QoS drivers 21

Customer B Customer BMetro
Carrier Ethernet

Bridge

Ethernet Virtual Private Line

Customer ACustomer A

Metro
Carrier Ethernet

Bridge

Metro
Carrier Ethernet

Bridge

Metro
Carrier Ethernet

Bridge

Ethernet over SDH/SONET, MPLS,

Optical or Copper

Customer B Customer B

Customer ACustomer A
Ethernet over SDH/SONET, MPLS,

Optical or Copper

Ethernet Private Line

Customer B Customer BMetro
Carrier Ethernet

Bridge

Ethernet Virtual Private Line

Customer ACustomer A

Metro
Carrier Ethernet

Bridge

Metro
Carrier Ethernet

Bridge

Metro
Carrier Ethernet

Bridge

Ethernet over SDH/SONET, MPLS,

Optical or Copper

Customer B Customer B

Customer ACustomer A
Ethernet over SDH/SONET, MPLS,

Optical or Copper

Ethernet Private Line

Figure 2.2: Ethernet private line and virtual private line connectivity.

among di¤erent users and as a result, services can be o¤ered at lower costs.
With respect to providing QoS guarantees however, the opposite is true. It
is easier to control and monitor QoS for tra¢ c streams for which bandwidth
is dedicated than when they share the network resources. Furthermore, tem-
porary congestion moments can hamper performance of di¤erent customers in
an unpredictable way. At these instances, QoS mechanisms are required to
ensure that performance guarantees are still met. It is important to note, that
one should not infer that the private or dedicated connectivity is devoid of
all QoS issues. Most service providers believe that installing a tra¢ c policer
conforming to a contract su¢ ces. Unfortunately, they do not pay attention
to the interaction of the policers with end application characteristics which
could result in undesirable performance and user perceived quality as shown
in Chapters 3 and 4 .

� Line vs LAN : Ethernet line connectivity refers to point-to-point connectivity
whereas LAN refers to multipoint-to-multipoint connectivity. Both Line as
well as LAN can be con�gured as virtual or private. Figure 2.3 shows a LAN
service con�gured as a combination of multiple point-to-point connections or
private lines where the underlying bandwidth is dedicated.

Figure 2.4 is a true LAN providing any-to-any connectivity by sharing the
underlying bandwidth. The complication with LAN connectivity, whether

22 2 Carrier Ethernet

Ethernet Private LAN

Metro
Carrier Ethernet

Bridge

Metro
Carrier Ethernet
Bridge

Customer B
Site 1

Customer A
Site 1

Customer B
Site 2

Customer A
Site 2

Customer B
Site 3

Customer A
Site 3

Metro
Carrier Ethernet

Bridge

Ethernet over
SDH/SONET, MPLS, Optical, Copper etc

Ethernet Private LAN

Metro
Carrier Ethernet

Bridge

Metro
Carrier Ethernet
Bridge

Customer B
Site 1

Customer A
Site 1

Customer B
Site 2

Customer A
Site 2

Customer B
Site 3

Customer A
Site 3

Metro
Carrier Ethernet

Bridge

Ethernet over
SDH/SONET, MPLS, Optical, Copper etc

Figure 2.3: Ethernet private LAN connectivity.

virtual or private, is that it is di¢ cult to predict the amount of tra¢ c �owing
between the multiple end points. This tra¢ c �ow is also typically expected
to change over time. This, however, is a tra¢ c engineering or a routing issue.
An elegant and innovative way to solve this problem is presented in [84].

2.5 Remarks on Ethernet QoS research

In this section we brie�y discuss QoS mechanisms proposed in standards and liter-
ature for Ethernet networks and its relation to the work we present in this thesis.
Since Ethernet�s move into the metro and wide area networks is a relatively new
development, it is not surprising that the QoS literature in this context is rather
limited. In fact most of the QoS research for Ethernet is focused on congestion
control and generic QoS frameworks ([63]). The congestion control work for Ether-
net mainly focuses on protocol and implementation modi�cations of the feedback
functionality provided in IEEE 802.3x. For example, [29] proposes that the back-
pressure/pause functionality should not be applied to the time-sensitive tra¢ c class
and references [8] and [50] propose that the backpressure signal should be sent di-
rectly to the ingress points of the network instead of hop-by-hop and whose stability
is analyzed in [36]. Recently, a forward congestion noti�cation mechanism has also
been proposed ([37]). However, all these protocol enhancements and modi�cations
to the backpressure/pause functionality still rely on proper con�guration of the con-
gestion detection thresholds to optimize the network performance. This particular
issue has not been addressed by previous work in literature. The work on conges-

2.5 Remarks on Ethernet QoS research 23

Figure 2.4: Ethernet virtual LAN connectivity.

tion control presented in this thesis is of an advanced nature, in the sense that we
provide not just detailed network simulations but also extensive analytical modeling
and analysis of the backpressure mechanism. This enables proper parameter selec-
tion and tuning the achieved performance with the scheme. Furthermore, we also
address other key QoS mechanisms such as tra¢ c policing and scheduling.

Part I

Tra¢ c policing

25

Introduction to Part I

Tra¢ c policing involves monitoring and enforcing the tra¢ c limit agreed upon in
the SLA as explained earlier in Chapter 1. The traditional method of policing with
a bu¤erless token bucket is simple and inexpensive. However, it imposes a bursty
drop pattern which adversely interacts with TCP�s congestion control mechanism
resulting in throughputs far below the (SLA) contractual tra¢ c rate (see [90]). This
is an extremely undesired situation for both the service provider who provisions his
network according to this tra¢ c rate and its customer who pays for it.

In this part of the thesis we propose two new bu¤erless policing methods and
analyze their impact on higher layer application performance. We show that the
mechanisms we propose are a considerable improvement over the traditional token
bucket policer in terms of TCP throughput and also work well for UDP. These
mechanisms are presented in Chapters 3 and 4.

� In Chapter 3, we propose and analyze a bu¤erless token bucket policer which
exploits the IEEE 802.3x backpressure method available for Ethernet net-
works. In particular it warns the customer by sending a transmission-pause
message if he is about to send tra¢ c above the contractual tra¢ c rate. A thor-
ough analysis of this scheme shows that this mechanism has the consequence
that TCP bursts are smoothened by packets being bu¤ered at the customer
equipment. This is achieved without introducing a dedicated shaper for this
purpose. This feedback policing method results in improved TCP performance
with throughputs close to the contractual tra¢ c rate.

� In Chapter 4, we propose and analyze a bu¤erless token bucket with a dynamic
bucket size. The bucket size adapts to the bursty nature of the incoming tra¢ c
without any knowledge of the tra¢ c pro�le. This is particularly useful for TCP
tra¢ c generating varying bursts due to �uctuations in its transmission window.
If the tra¢ c is constant rate, then the bucket size remains constant, which is
suitable for UDP tra¢ c. Since the mechanism does not rely on Ethernet
speci�c hardware, it can be applied to any packet networking technology.

27

Chapter 3

A backpressure based policer

In this chapter, we present and analyze a novel bu¤erless token bucket policer, which
interacts well with TCP�s �ow control. The policing method exploits the Ethernet
backpressure mechanism described in the IEEE 802.3x standard ([76]), which is
primarily used for avoiding congestion ([55], [66], [86], [22]). While enforcing an SLA
with a policer it is normal and logical to drop all customer tra¢ c which exceeds the
maximum tra¢ c rate and/or packet burst size agreed in the SLA contract. This
is because the service provider provisions his network with this limit in mind. The
policing mechanism presented in this chapter, however, does not simply drop all
packets that exceed the maximum tra¢ c rate. Instead it adds an element of feedback
with the backpressure mechanism to the sender (customer), if it is approaching
this tra¢ c limit (as described in [81]). Transmission of the Ethernet backpressure
message results in temporary pause of data transmission and queueing of packets at
the customer egress queues. This temporary bu¤ering of packets has the e¤ect that
tra¢ c sent by the customer is automatically smoothened requiring minimal e¤ort
from both the service provider and its customer.

The rest of the chapter is organized as follows. In Section 3.1, we present the
Ethernet backpressure based policing method. In Section 3.2, we present the exper-
imental setup used to analyze the performance of the policing method introduced
in Section 3.1. Section 3.3 provides the performance results achieved by our back-
pressure based policing mechanism relative to the traditional practice of dropping
packets that exceed the peak tra¢ c rate. We focus on both TCP as well as UDP
tra¢ c performance in terms of throughput, delay and jitter. We also look at fairness
in throughput results for TCP tra¢ c and brie�y at the in�uence of threshold values
for the backpressure mechanism. Finally in Section 3.4, we present the conclusions
of our study.

29

30 3 A backpressure based policer

3.1 A tra¢ c policing mechanism based on back-
pressure

In this chapter, we study the use of Ethernet backpressure in a tra¢ c policing
mechanism for metropolitan area networks. The new policing mechanism is realized
by coupling the backpressure to a token bucket rate controller, rather than to a
queue for congestion control, which is the approach used in the literature.

Before we can explain our proposed tra¢ c-policing mechanism, we must �rst
discuss the concept of backpressure. Backpressure is intended to provide �ow-control
on a hop-by-hop basis, by allowing ports to turn o¤ their upstream link partners for
a period of time. In the case of a half-duplex link, the link partner or end station is
turned o¤by sending a jamming signal. The signal causes the end-station to perceive
the medium as busy; accordingly, it stops transmitting, and backs o¤. In the case
of a full-duplex link, the upstream link partner is turned o¤ using a medium access
control (MAC) layer �ow-control mechanism de�ned in the IEEE 802.3 standard
(see [76]). This mechanism is based on a special frame (called a pause frame) in
which a period of time (called a pause time) is speci�ed. When an end station or
router receives the pause frame, it reads the pause time and does not attempt to
transmit until the pause time has passed.

In metropolitan or other public networks, bandwidth is usually sold by specifying
a committed information rate (CIR), a peak information rate (PIR), or both. The
sender is allowed to send more than the CIR, but excess packets are marked and may
later be dropped from the network (see [32]). In contrast, when the sender exceeds
the PIR, packets are dropped immediately. To enforce the PIR, the incoming tra¢ c
rate on a port is monitored, using the token bucket mechanism shown in Figure 3.1.
Tokens are added to the token bucket at a rate equal to the PIR, until the peak
bucket size (PBS) is reached. When a frame is sent, the number of tokens in the
bucket is decreased by the number of bytes in the frame. Packets that arrive on a
link are forwarded, as long as there are tokens in the bucket. If there are insu¢ cient
tokens in the bucket when a packet arrives, the packet is dropped.

We propose to trigger backpressure on an incoming link if the number of tokens
falls below a pre-de�ned threshold, which indicates that the PIR is about to be
exceeded. Then, as soon as the number of tokens in the bucket rises above another
pre-de�ned threshold, the backpressure can be released. The backpressure-based
tra¢ c-policing mechanism we propose will monitor the input tra¢ c rates at the
ingress ports of the MAN and, if the input rate at any port starts to exceed the
PIR, the mechanism will send a backpressure signal on that port. In this way,
backpressure will be used to notify the sender and to prevent excess packets from
being sent to the MAN, thereby avoiding packet drops at the metro bridge.

Unlike a traditional congestion-based backpressure mechanism, the tra¢ c-policing
mechanism we propose is not triggered by queues that have built up in the network,

3.2 Experimental Setup 31

max. PBS tokens
in

token bucket
1 token =
credit for
1 byte

PIR tokens
per second

arriving
packets

Enough
credits?

Mark
packets red

no
yes

PIR = Peak Information Rate
PBS = Peak Bucket Size

Mark
packets
green

drop tokens depending
on the size of the packet

PIR max. PBS tokens
in

token bucket
1 token =
credit for
1 byte

PIR tokens
per second

arriving
packets

Enough
credits?

Mark
packets red

no
yes

PIR = Peak Information Rate
PBS = Peak Bucket Size

Mark
packets
green

drop tokens depending
on the size of the packet

PIR

Figure 3.1: A token bucket rate controller.

so delay di¤ers greatly from what it is in a congestion-based mechanism. For this
reason, the performance of a traditional backpressure mechanism is not comparable
to the performance of our mechanism.

3.2 Experimental Setup

In order to analyze the performance of our proposed backpressure policing mecha-
nism, we ran tests on a live network. Because backpressure can a¤ect the end-station
directly, test results can vary greatly, depending on the implementation of the pro-
tocol stacks and bu¤ering and queueing speci�cations. For these reasons, simulation
often fails to re�ect reality; by using a live network, we can examine and understand
real behavior.

In the scenarios considered, one or more servers are connected to a MAN, either
directly or through a router. Access to the MAN is supplied by a metro bridge that
is part of the MAN and that uses a token �lter to perform tra¢ c policing. Figure 3.2
illustrates this scenario. The servers, the router, and the bridge are interconnected
by 100 Mb/s Ethernet links. Because our focus was on the e¤ect of backpressure on
the end-station, it was not necessary to use an elaborate MAN with many bridges.
In our set-up, the MAN is simulated by adding a con�gurable delay to all packets
in the bridge, and multiple clients are simulated by opening multiple connections

32 3 A backpressure based policer

Server ClientMetro Bridge
(with token bucket)

Pause
frame

Router

Metro
Network

High
Low

Thresholds

ServerServer ClientClientMetro Bridge
(with token bucket)

Pause
frame

Router

Metro
Network

Metro
Network

High
Low

Thresholds

Figure 3.2: Setup used in the experiments.

from a single client. The bridge and token-bucket functionality were implemented
on a personal computer (PC) running Linux. The server and the clients used the
Microsoft Windows 20001 TCP stack.

It is important to note that we do not consider a congestion situation. This
means that packets are only dropped when there is a violation of the tra¢ c contract
(i.e., when the o¤ered tra¢ c rate exceeds the PIR). By removing other factors that
could a¤ect the results, this approach allows us to concentrate on and to study the
e¤ect of the backpressure and token bucket combination.

3.3 Experimental Results and Analysis

The results discussed in this section focus on two types of tra¢ c; TCP �le transfers,
and UDP multimedia streams. Both the TCP and UDP tra¢ c streams were gener-
ated by an application developed for this purpose. We also consider the performance
of a real application (i.e., NetMeeting).

In the test runs, we have considered two con�gurations of the router. In the �rst
con�guration, the router does not make a distinction between UDP and TCP tra¢ c.
In the second con�guration, the router gives strict priority to (time-sensitive) UDP
tra¢ c, meaning that UDP packets are always forwarded before queued TCP packets.
However, this distinction does not a¤ect the normal policing method without back-
pressure, because in that method each incoming packet is immediately forwarded.

3.3.1 TCP File Transfers

In the experiments, TCP tra¢ c was generated by a �le transfer session. The number
of simultaneous TCP connections was varied from 1 to 9, but the total amount of
data transferred was kept constant at 24 MB. The simultaneous TCP connections
were policed as an aggregate with a PIR of 400 KB/s and a bucket size of 80 KB; this
means that the token bucket could �ll up in 0.2 seconds. Low and high thresholds

1Microsoft and Windows are registered trademarks of the Microsoft corporation.

3.3 Experimental Results and Analysis 33

were set to 60% and 80% of the bucket size, respectively. The scenario used for the
tests in this section is shown in Figure 3.2. However, the results would be the same
if the end-stations were directly connected to a metro bridge (this con�guration can
be pictured by removing the router from Figure 3.2). In that case, packets would
be bu¤ered in the end-stations instead of in the router.

Throughput

Figure 3.3 and Figure 3.4 show the aggregate throughput results for di¤erent num-
bers of simultaneous connections without and with backpressure, respectively. From
the �gures we can see that backpressure improves TCP performance, irrespective of
network delay and the number of active TCP connections. Indeed, with backpres-
sure, TCP performance is close to optimal, because the 400 KB/s rate counts the
number of bytes in raw Ethernet frames. The explanation for this near-optimal be-
havior is that backpressure prevents frame drops, so no retransmissions are needed.
Therefore, all transmitted frames contribute to the e¤ective throughput.

Without backpressure, we observed the following:

� Reasonable delay values improve TCP throughput performance;

� With multiple connections, the total throughput is also good with reasonably
small delay values (e.g., 5 ms); and

� TCP performs poorly when the network has very low delay and there are only
a few TCP connections.

To understand the rather poor performance of a single TCP connection with
low delay, we consider how TCP�s fast retransmit algorithm works (see [77]). This
algorithm relies on the receiver sending duplicate acknowledgements (ACKs) when it
receives out-of-order segments. Suppose that, after receiving a number of duplicate
ACKs, the sender decides to re-send a supposedly lost packet, without waiting for
the retransmission timer to expire. Now, when the network delay is su¢ ciently high
and the token bucket starts dropping packets, there will usually be a number of
ACKs in transit from the receiving PC to the sending PC. There will also be a
number of data packets in transit from the bridge to the receiving PC, which will
also generate ACKs going back to the sending PC. When these ACKs are received,
the sliding-window algorithm causes the sending PC to send more data packets.
Since these packets are sent some time after the token bucket started to drop, it is
likely that the token bucket will contain enough tokens to let some of the packets
pass. These packets will appear to the receiving PC to be out-of-order, so they will
generate duplicate ACKs that will trigger the fast retransmit algorithm.

We can now explain why the fast retransmit algorithm does not work as well when
the network has very low delay, because in that case only very few data packets and

34 3 A backpressure based policer

•245
•265
•285
•305
•325
•345
•365
•385

•0 •10 •20 •30 •40

•Delay in ms

•T
hr

ou
gh

pu
t i

n
K

B
/s

1
2
3
4
5
6
7
8
9

10

No. of TCP
connections

•245
•265
•285
•305
•325
•345
•365
•385

•0 •10 •20 •30 •40

•Delay in ms

•T
hr

ou
gh

pu
t i

n
K

B
/s

1
2
3
4
5
6
7
8
9

10

No. of TCP
connections

1
2
3
4
5
6
7
8
9

10

1
2
3
4
5
6
7
8
9

10

No. of TCP
connections

Figure 3.3: Throughput without backpressure.

•245

•265

•285

•305

•325

•345

•365

•385

•0 •10 •20 •30 •40

•Delay in ms

•T
hr

ou
gh

pu
t i

n
K

B
/s 1

2
3
4
5
6
7
8
9

10

No. of TCP
connections

•245

•265

•285

•305

•325

•345

•365

•385

•0 •10 •20 •30 •40

•Delay in ms

•T
hr

ou
gh

pu
t i

n
K

B
/s

•245

•265

•285

•305

•325

•345

•365

•385

•0 •10 •20 •30 •40

•Delay in ms

•T
hr

ou
gh

pu
t i

n
K

B
/s 1

2
3
4
5
6
7
8
9

10

No. of TCP
connections

1
2
3
4
5
6
7
8
9

10

1
2
3
4
5
6
7
8
9

10

No. of TCP
connections

Figure 3.4: Throughput with backpressure

3.3 Experimental Results and Analysis 35

Th
ro

ug
hp

ut
 in

 b
yt

es
 p

er
 se

co
nd

Time in seconds

5 Background TCP connections
Average Throughput 1 TCP connection = 119 KB/s

Th
ro

ug
hp

ut
 in

 b
yt

es
 p

er
 se

co
nd

Time in seconds

5 Background TCP connections
Average Throughput 1 TCP connection = 119 KB/s

Figure 3.5: Fairness scenario result without backpressure.

ACKs will be in transit when the token bucket drops. This means that the sender
will not receive many ACKs and will not send many more new packets. Thus, the
receiver will not send duplicate ACKs either, and a single TCP connection with low
delay will spend a considerable amount of time waiting for the retransmission timer
to expire.

With a large number of connections and low delay, the fast retransmit algorithm
is still unlikely to work, but in this case there is a good chance that, while one
connection is waiting for a retransmission timer to expire, other connections can use
the available tokens.

Fairness

Another aspect explored in the tests was fairness in the treatment of multiple TCP
streams. Here we focused on short-term fairness for small �le transfers, which is
important for such things as Web browsing. In order to analyze fairness, multiple
TCP streams (the light green lines in Figures 3.5, 3.6, and 3.7) were kept running.
After some time, one additional TCP connection (the dark line in Figures 3.5, 3.6,
and 3.7) was initiated. The throughput of this connection was then monitored for
multiple test runs. It is important to note that the PIR values used to evaluate
fairness were 2MB/s and all the TCP connections shown in Figures 3.5 to 3.7 were
policed as an aggregate.

Figures 3.5 and 3.6 show two runs of the same scenario without backpressure,
with a network delay of 15 ms. In the graphs it can be seen that the light lines of the

36 3 A backpressure based policer

Th
ro

ug
hp

ut
 in

 b
yt

es
 p

er
 se

co
nd

Time in seconds

5 Background
TCP connections

Average Throughput
1 TCP connection
= 1109 KB/s

Th
ro

ug
hp

ut
 in

 b
yt

es
 p

er
 se

co
nd

Time in seconds

5 Background
TCP connections

Average Throughput
1 TCP connection
= 1109 KB/s

Figure 3.6: Fairness scenario result without backpressure.

Th
ro

ug
hp

ut
 in

 b
yt

es
 p

er
 se

co
nd

Time in seconds

5 Background TCP connections
Average Throughput 1 TCP connection = 313 KB/s

Th
ro

ug
hp

ut
 in

 b
yt

es
 p

er
 se

co
nd

Time in seconds

5 Background TCP connections
Average Throughput 1 TCP connection = 313 KB/s

Figure 3.7: Fairness scenario result with backpressure.

3.3 Experimental Results and Analysis 37

background connections behave very erratically. In the �rst graph, the new TCP
connection is hindered by the other connections, and it takes quite some time for
the �le transfer to complete. In the second graph, the new TCP connection su¤ers
less from packet drops, and it can send the �le in a very short time (i.e., one-tenth
the time required by the new TCP connection in the �rst graph). Further runs of
the same scenario demonstrate that the di¤erence in performance observed in these
two runs is typical for this scenario; clearly, short-term behavior is unfair.

Figure 3.7 shows a typical run with backpressure. It is clear that bandwidth
is distributed equally to all active connections. Neither adding more background
TCP connections nor changing the network delay alters this equal distribution. The
delay introduced by backpressure due to bu¤ering of packets smoothens TCP�s tra¢ c
generation thereby improving performance. A next step might be to see how giving
di¤erent delays to di¤erent TCP connections would in�uence fairness.

We conclude that backpressure improves the fairness of bandwidth distribution
and provides increased throughput.

3.3.2 UDP Streams Mixed with TCP File Transfers

To study the e¤ect of the backpressure mechanism on multimedia applications, we
tested the performance of constant-rate UDP �ows. In the absence of other tra¢ c,
such multimedia �ows perform well if their cumulative rate stays below the PIR;
however, once the cumulative rate exceeds the PIR, packets will be dropped, re-
gardless of the policing method used. Therefore, we looked at a mix of UDP and
TCP tra¢ c, concentrating on UDP packet loss and jitter. We varied the number
of TCP connections from 1 to 7, and used UDP packet sizes of 1000 bytes and a
constant tra¢ c rate of 200 KB/s, which is half the available bandwidth. In each run,
a total of 8000 UDP packets were sent. The token bucket parameters were set to
the same values that they had in the TCP tests. We measured jitter by calculating
the standard deviation of packet delay and the di¤erence between maximum delay
and minimum delay.

Since most multimedia applications are severely a¤ected by packet loss and jitter,
we also considered a scenario in which a router is set up to provide quality of service
(QoS) for multimedia tra¢ c. A QoS policy for multimedia tra¢ c usually prescribes
that certain tra¢ c classes be given priority over other tra¢ c classes, and sets a limit
on the amount of tra¢ c in each tra¢ c class. As long as these limits are not exceeded,
packets in the multimedia tra¢ c class are given priority over other packets. For our
experiment, this means that UDP packets are given priority over TCP packets.

Figure 3.8 shows packet loss in di¤erent scenarios. The small diamonds indicate
a delay of 15 ms, while the large squares indicate the results with a delay of 50
ms. The light blue lines show UDP drops when backpressure is not enabled. These
packets are dropped in the metro bridge, because the PIR is exceeded. The maroon

38 3 A backpressure based policer

•0

•100
•200

•300
•400

•500

•600
•700

•800

•1 •2 •3 •4 •5 •6 •7 •8 •9 •10

•Number of TCP connections

•N
um

be
r o

f U
D

P
pa

ck
et

s
•d

ro
pp

ed
Without Backpressure;
15ms delay
With Backpressure no
priority 15ms delay
With Backpressure;
with priority; 15ms delay
Without Backpressure;
50ms delay
With Backpressure; no
priority; 50ms delay
With Backpressure;
with priority; 50ms delay•0

•100
•200

•300
•400

•500

•600
•700

•800

•1 •2 •3 •4 •5 •6 •7 •8 •9 •10

•Number of TCP connections

•N
um

be
r o

f U
D

P
pa

ck
et

s
•d

ro
pp

ed
Without Backpressure;
15ms delay
With Backpressure no
priority 15ms delay
With Backpressure;
with priority; 15ms delay
Without Backpressure;
50ms delay
With Backpressure; no
priority; 50ms delay
With Backpressure;
with priority; 50ms delay

Figure 3.8: Comparison of packet loss for various scenarios.

and black lines show UDP drops when backpressure is enabled, but no priority is
given to UDP tra¢ c. The packets in this scenario are dropped in the router, because
the queues over�ow. Finally, the black lines show UDP drops when backpressure is
enabled and priority is given to UDP tra¢ c. (As noted earlier, giving priority to
UDP tra¢ c has no e¤ect when backpressure is not enabled, because no queueing
occurs.)

The graph in Figure 3.8 shows that the number of packet drops without back-
pressure is large. Results are very unstable without backpressure, because of the
randomness of the packet drops with respect to the di¤erent connections. Indeed,
repeated runs of the scenario give di¤erent results each time. The �uctuation of the
light (blue) lines is explained by the fact that the points in the graphs represent
only one run. The backpressure results are more stable and consistent. Backpres-
sure reduces the number of packet drops. With priority queueing and backpressure
enabled, there is no UDP packet loss at all.

Figure 3.9 shows the standard deviation of delay for the same scenarios that
were used for the results in Figure 3.8. Jitter is very low without backpressure; it is
somewhat higher when backpressure is enabled and priority is given to UDP tra¢ c.
The worst results occur when backpressure is enabled and no priority is given to
UDP tra¢ c. With a low number of TCP connections, it does not matter much if
the router has priority queueing enabled or not, but with more TCP connections,
jitter increases if the router does not have priority queueing. When the router
does give priority to UDP tra¢ c, the jitter stabilizes, even if the number of TCP
connections increases. The reason for this is that without priority queueing and
multiple connections, TCP packets can delay UDP packets, while when priority
queueing is enabled, UDP packets get priority and have no delay other than waiting

3.3 Experimental Results and Analysis 39

•0.0
•10.0
•20.0
•30.0
•40.0
•50.0
•60.0
•70.0
•80.0
•90.0

•1 •2 •3 •4 •5 •6 •7 •8 •9 •10
Number of TCP connections

Without Backpressure;
15ms delay
With Backpressure;
No priority; 15ms delay
With Backpressure;
with priority 15ms delay
Without Backpressure;
50ms delay
With Backpressure;
No priority; 50ms delay
With Backpressure;
with priority; 50ms delay

St
an

da
rd

 d
ev

ia
tio

n
of

pa
ck

et
 d

el
ay

•0.0
•10.0
•20.0
•30.0
•40.0
•50.0
•60.0
•70.0
•80.0
•90.0

•1 •2 •3 •4 •5 •6 •7 •8 •9 •10
Number of TCP connections

Without Backpressure;
15ms delay
With Backpressure;
No priority; 15ms delay
With Backpressure;
with priority 15ms delay
Without Backpressure;
50ms delay
With Backpressure;
No priority; 50ms delay
With Backpressure;
with priority; 50ms delay

St
an

da
rd

 d
ev

ia
tio

n
of

pa
ck

et
 d

el
ay

Figure 3.9: Standard deviation of delay for various scenarios.

for the backpressure signal.

When we look at the maximum end-to-end delay, the same pattern emerges.
Without backpressure, maximum end-to-end delay is negligible (i.e., 0 to 10 ms);
with backpressure, and with no priority given to UDP tra¢ c, it can be approximately
510 to 520 ms. However, with priority given to UDP tra¢ c, the use of backpressure
reduces maximum delay to 50 to 60 ms. (Note that the backpressure pause time in
our tests was 40 ms.) In the last section, we explain these delay values.

3.3.3 NetMeeting

This section presents qualitative results of tests using NetMeeting audio and video
and TCP �le transfers. The results of these tests are hard to quantify; to some
extent, audio and video performance is subjective.

All tests in this section involved 7 TCP connections running simultaneously with
the NetMeeting session. The delay was �xed at 15 ms and the token bucket rate
at 400 KB/s. Separate tests were run for video and audio. With a still image, a
video stream generates about 9 KB/s of tra¢ c; when there is a lot of movement,
it generates about 15.5 KB/s. NetMeeting generates an audio stream of up to 4.5
KB/s.

Without backpressure

In this scenario, audio quality is not bad, but, sporadically, a small part of the
audio stream is lost. The reason for this is that as soon as packet drops start to
occur, TCP lowers its rate. However, because audio only needs a small part of the

40 3 A backpressure based policer

bandwidth, almost no audio frames are dropped. When more background tra¢ c is
introduced, more video packets are dropped, which leads to even stronger periods
of freezing of the video image and more corruption of the image.

With backpressure without priority for UDP

In this scenario, there is some delay in the audio stream, but no packets are dropped,
and performance is optimal. There is more delay (as much as 2 seconds) in the video
stream. The larger the video stream, the greater the delay. If the video image does
not change much, the delay decreases. Many changes to the video image over an
extended period of time lead to delay and, ultimately, to some dropping, which
occurs when the queue is full.

With backpressure with priority for UDP

In this scenario, audio performance is good, because there are no drops, and video
performance is optimal. Unlike the case in the previous scenario, there are no
noticeable delays. Furthermore, because there are no drops, image freezing does not
occur either.

In conclusion, our tests indicate that NetMeeting performs best when backpres-
sure is employed and the router gives priority to UDP tra¢ c.

3.3.4 Role of Thresholds

Two of the most important parameters in the backpressure policing mechanism are
the low and high thresholds. In order to set them appropriately, it is essential to
study their in�uence on results. In this section, we analyze the performance of the
backpressure mechanism with di¤erent threshold values.

Position of the low and the high threshold

In our tests, we �xed the low threshold at 60% and the high threshold at 80% of
the size of the token bucket.

The low threshold should not be set too low, because it can take some time for
the sender to react to the backpressure signal, and in that time packets can still be
received. Indeed, if the low threshold is set too low, there will not be enough tokens
to forward these extra packets, and they will be dropped, which is exactly what the
backpressure mechanism is designed to prevent.

The low threshold setting can also a¤ect the maximum burst size, as follows.
Without backpressure, the maximum burst size is the token bucket size, but if
backpressure is enabled, the maximum burst size is the di¤erence between the token

3.3 Experimental Results and Analysis 41

•0

•100

•200

•300

•400

•500

•600

•700

•800

•900

•0 •10 •20 •30 •40 •50 •60

•Threshold difference

•P
ac

ke
tl

os
s

•Router without priority
•Router with priority

•0

•100

•200

•300

•400

•500

•600

•700

•800

•900

•0 •10 •20 •30 •40 •50 •60

•Threshold difference

•P
ac

ke
tl

os
s

•Router without priority
•Router with priority

Figure 3.10: Packet loss for UDP tra¢ c with di¤erent threshold di¤erences.

bucket size and the low threshold, plus one or two packets transmitted before the
sender can react to the backpressure signal.

Di¤erence between the low and the high threshold

The di¤erence between the low and the high threshold has a signi�cant impact on
the results, because it directly a¤ects the pause time for the sender. When the
di¤erence between the two thresholds increases, the sender has to wait longer before
the high threshold is reached; on the other hand, fewer pause frames have to be sent
out.

To test the impact of the di¤erence between the thresholds on test results, we
performed several tests with varying threshold di¤erences. For these tests, the token
bucket size was set to 80 KB and the rate to 400 KB/s. Six TCP connections were
set up simultaneously with a UDP connection with the same token bucket settings
that were used in the previous experiments. Figure 3.10 shows the packet loss in
these tests, with and without UDP priority queueing. It can be observed that in
both cases a large di¤erence between the thresholds leads to packet loss. Drops occur
somewhat sooner without UDP priority queueing. The reason for this is that, when
the thresholds are far apart, the router has to pause for a long time, which causes
its queues to be �lled up. Then, when the queues are full, packets are dropped.

Figure 3.11 shows the maximum jitter with and without UDP priority queueing.
Without priority queueing, the maximum jitter is almost constant at 450 to 500
ms. With priority queueing, the maximum jitter starts low and increases when the
threshold di¤erence increases. The reason for this is that, with priority queueing,
jitter is caused primarily by the duration of the backpressure signal.

42 3 A backpressure based policer

•0

•100

•200

•300

•400

•500

•600

•0 •10 •20 •30 •40 •50 •60

•Threshold difference

•M
ax

jit
te

r

•Router without priority

•Router with priority

•0

•100

•200

•300

•400

•500

•600

•0 •10 •20 •30 •40 •50 •60

•Threshold difference

•M
ax

jit
te

r

•Router without priority

•Router with priority

Figure 3.11: Maximum jitter with di¤erent threshold di¤erences.

3.3.5 Maximum Jitter

Maximum jitter denotes the maximum di¤erence in delay between two packets. One
contributor to jitter is the pause duration or pause time. As we have noted earlier,
whenever the PIR is exceeded, a pause frame is sent, and the following packet has
to wait at least as long as the pause time. The pause time is the time needed
to accumulate enough tokens in the bucket. More speci�cally it is the di¤erence
between the high and the low thresholds divided by the PIR. For all tests in this
chapter, except for the threshold tests, the pause time was (64 KB - 48 KB) divided
by 400 KB/s, which equals 40 ms.

Queueing delay is more di¢ cult to calculate, because it varies, depending on
scenario and queue type. A queue is typically limited either by the number of
packets or by the number of bytes it can contain. We assume a queue that has a
limit on the number of packets, but the reasoning below can easily be applied to a
queue that has a limit on the number of bytes. To determine the maximum jitter,
we assume that the queue is completely �lled. We also assume that the following
parameter values are known:

UDP_psize = average UDP packet size,

non_UDP_psize = average non-UDP packet size

(usually 1,514 bytes),

fraction_UDP_in_queue = fraction of the queue occupied by UDP packets,

queue_size = queue size in packets.

Note that UDP packet sizes can vary signi�cantly by application. Also, the

3.4 Conclusions 43

percentage of the queue consisting of UDP packets can be hard to estimate, because
it can vary over time.

Given the values of the parameters above, we can calculate the following

queue_UDP = number of UDP bytes in the queue,

queue_other = number of other (i.e., non-UDP) bytes in the queue,

as follows:

queue_UDP = fraction_UDP_in_queue� queue_size� UDP_psize;

queue_other = (1� fraction_UDP_in_queue)

�queue_size� non_UDP_psize:

Finally, this allows us to calculate the queueing delay:

queueing_delay = (queue_UDP + queue_other)=PIR:

In our tests, the size of all UDP packets was 1000 bytes, and the size of almost all
TCP packets was 1514 bytes. Since the UDP rate is half the PIR, we estimate the
queue to contain 50% UDP and 50% TCP tra¢ c. The total queue size of the router
we used in our tests is 164 packets. Without priority queueing, packets are dropped
at the router, so we know that most of the time the router queue is almost completely
�lled. The number of UDP bytes in the queue is approximately 0:5�164�1000 = 82
KB. The number of TCP bytes is approximately 0:5� 164� 1514 = 124 KB. So the
total queue size will be about 206KB. The queue empties at the rate of the PIR,
which is set at 400KB/s. So it will take approximately 515 ms for the queue to
be emptied. This is consistent with the value we observed in our UDP test with
backpressure enabled and priority queueing. With priority queueing, almost no UDP
queues are built up, and the maximum jitter should be equal to or slightly higher
than the pause time of 40 ms. This is consistent with the 50 to 60 ms maximum
jitter we observed in our tests.

3.4 Conclusions

In this chapter, we have proposed and analyzed a tra¢ c-policing mechanism based
on backpressure. The backpressure mechanism sends a backpressure signal to the
customer, if the agreement not to send tra¢ c at greater speed than the speci�ed
peak rate is about to be violated. Thresholds, combined with a policing method
based on a token bucket, are used to create this mechanism. When the number of
tokens in the token bucket falls below a low threshold level, a backpressure signal is
sent; it is released when the number of tokens rises above a high threshold level. This

44 3 A backpressure based policer

mechanism is compared to the simple and widely used approach of simply dropping
tra¢ c when the contract is violated.

Experimental results indicate that the backpressure mechanism is extremely ef-
fective for TCP tra¢ c; it optimizes both throughput performance and fairness.
However, for UDP-based multimedia applications, the e¤ect is mixed. In the ab-
sence of QoS support, the use of backpressure can interfere with UDP performance,
because considerable jitter can occur. In this case, the operator can choose to dis-
able the backpressure mechanism. But when priority is given to UDP tra¢ c, which
should be the case since it transports time-sensitive tra¢ c, backpressure performs
well. For example, it reduces packet drops, which is extremely important for real-
time applications that are also drop sensitive (such as NetMeeting video). The delay
with backpressure and with UDP priority is larger than it is without backpressure,
but it is still within typical end-to-end delay requirements. For example, the use of
backpressure causes an end-to-end delay of 50 to 60 ms for voice (as compared to
10 to 20 ms without backpressure), but this is still far below the upper bound of
100 ms for reasonable voice performance. In fact, 40 ms of the 50 to 60 ms delay
is due to the pause time of the backpressure. Setting the thresholds closer, further
reduces this delay. Thus, we can conclude that backpressure performs well for both
TCP and UDP, and is a better choice than the simple �drop above PIR�practice.

Chapter 4

A dynamic token bucket policer

In Chapter 3, we presented a policing method which improves performance of TCP
tra¢ c using the IEEE 802.3x capability. In this chapter we propose an alternative
approach which does not require Ethernet speci�c hardware functionality. We aim
at achieving TCP throughputs close to the (SLA) contractual tra¢ c rate. Ideally
this TCP performance should not depend on the speci�cs of the aggregate tra¢ c
pro�le which is being policed. In other words, the TCP goodput should be close
to the policed rate even if the target (policed) �ows behave unexpectedly due to
large values of round trip times (RTTs), or varying level of aggregation (number of
TCP connections policed as an aggregate), di¤erence between link speeds and the
policed rate etc. We try to achieve this by introducing a dynamic bucket size for the
token bucket policer. Our mechanism monitors TCP�s reaction to packet drops and
dynamically determines the appropriate bucket size. With rigorous simulations we
show that our scheme converges to the optimal bucket size in most cases and this
is achieved without any knowledge of parameters such as round trip time or level of
aggregation of the tra¢ c being policed. Although TCP�s interaction with a token
bucket policer has been widely studied ([70], [12], [40], [90]), the previous work has
not achieved the con�guration of token bucket parameters independent of the tra¢ c
pro�le.

The rest of the chapter is organized as follows. In Section 4.1 we �rst explain
the traditional token bucket policing mechanism. TCP performance with such a
token bucket policer is analyzed in Section 4.2 with special attention to the e¤ect
of increasing the bucket size. This analysis not only sheds light on the adverse
interaction of the token bucket and TCP but also motivates and rationalizes the
design of our dynamic token bucket solution. The results of Section 4.2 indicate
that one possible solution is to use a very large static bucket size for the policer.
In Section 4.3 we discuss the disadvantages of using such a large static bucket size.
Our dynamic bucket size solution is presented in Section 4.4 and its performance
analysis in section 4.5. We conclude the chapter in Section 4.6.

45

46 4 A dynamic token bucket policer

•b

•b
•c

•d

•d

•e

•a

•Time

Bucket size

b

b
c

d

d

e

a

To
ke

ns
 B

or
ro

w
ed

•b

•b
•c

•d

•d

•e

•a

•Time

Bucket size

b

b
c

d

d

e

a

To
ke

ns
 B

or
ro

w
ed

Figure 4.1: Schematic overview of tokens borrowed.

4.1 Token bucket policer

In this section we describe the token bucket policer that is widely used in packet
networks to police tra¢ c according to SLAs. The explanation provided here is
di¤erent from that in Section 3.1 and is aimed at setting the path to the introduction
of our dynamic token bucket policer later in this chapter.

A token bucket policer [51] uses tokens to monitor the incoming tra¢ c rate and
drops packets if they do not conform to the desired policed rate or peak information
rate (PIR). When a customer exceeds its PIR, packets are not immediately dropped.
Instead the initial burst exceeding the rate is allowed to pass through by borrowing
tokens from the token bucket. Figure 4.1 shows the possible situations of the tokens
being borrowed from a token bucket, where a token represents one byte. The solid
line shows the amount of tokens borrowed and the dotted line shows the bucket
size. Initially, there are no tokens borrowed ((a) in Figure 4.1). If the tra¢ c rate is
equal to or smaller than the PIR, i.e. the customer is not exceeding the agreed rate,
no tokens have to be borrowed. However, when the tra¢ c rate exceeds the PIR,
tokens need to be borrowed for the amount of tra¢ c exceeding the PIR (b). If the
customer then starts sending exactly as much as the PIR, the amount of borrowed
tokens remains stable (c). If the tra¢ c rate drops below the PIR again, the part of
the rate that is not used determines the amount of tokens that are returned (d). To
limit the total amount of tokens that can be borrowed, a bucket size is determined.
If the amount of tokens borrowed reaches that limit (e), the policer stops lending
new tokens until some of the old ones are returned. Hence, if the customer continues
to exceed its PIR, the excess part of the packets will be dropped.

4.2 TCP Performance with token bucket policing

In the previous section we have explained the functioning of a token bucket policer.
In this section we analyze the performance of TCP with such a token bucket policer

4.2 TCP Performance with token bucket policing 47

Linkspeed100 Mbits/s

Bridge 0 Bridge 1 Host 1Host 0

Round Trip Time

100
Mbits/s

TCP
Sessions

Tokenbucket
PIR

Figure 4.2: Simulated network scenario.

and identify potential problems. In order to carry out this analysis we have used a
simulation environment consisting of two discrete event simulators: OMNeT++ [2]
and Network Simulator (NS2, [1]). OMNeT++ was used to simulate the network
and NS2 to generate the tra¢ c �ows. The support of di¤erent kinds of tra¢ c is more
mature in NS2 compared to OMNeT++, whereas the user-interface and the modu-
larity are strong points of OMNeT++ over NS2. We have used the Libsynk library
[61] to couple NS2 and OMNeT++. This library facilitates the synchronization of
the simulation time and the exchange of events between the simulators.

The network topology used for all simulations is shown in Figure 4.2. The
token bucket policing functionality was built into the OMNeT++ nodes, which are
Ethernet bridges in Figure 4.2. In the simulations we considered a wide variety of
scenarios with di¤erent tra¢ c and networks parameters such as the round trip time
(RTT), number of parallel TCP connections, WAN linkspeeds and the PIR. We
have used RTT values of 10 ms, 50 ms and 100 ms. The WAN linkspeeds were 2,
10 and 50 Mbits/s and the PIR values were 0.5, 1, 2, 5 and 10 Mbits/s. The tra¢ c
scenario consisted of parallel persistent TCP connections policed as an aggregate.
The number of such TCP connections was varied as 1, 2, 5 and 10 connections. Since
we want to improve the performance of �ows sharing a single policer, the considered
topology and parameters are su¢ cient to address most relevant parameters and
situations. In this chapter our goal is to focus on the direct interaction of TCP with
the token bucket. Therefore we assume that policing is the only source of packet
drops and consider congestion free scenarios. Consequently, we did not choose PIR
values that exceed the link speed. We also did not consider the cases in which the
goodput is limited by the TCP window size instead of the PIR. This happens for
instance, in the case of a 100 ms RTT, packet sizes of 1500 bytes, and a maximum
TCP window size of 42.67, the maximum achievable goodput is 1/0.1 � 8 � 1500
� 42.67 = 5.1 Mbits/s. So even with a PIR of 10 Mbits/s, the goodput is limited
to 51% of the PIR. We discuss the impact of the various parameters below.

Token bucket size: Extensive simulations were carried out with all possible
combinations of the parameter values introduced previously in this section. In the

48 4 A dynamic token bucket policer

(b) PIR = 5 Mbit/s

•0

•1

•2

•3

•4

•5

•6

•0 •100 •200 •300 •400 •500 •600 •700

Bucketsize (KB)

G
oo

dp
ut

 (M
bi

t/s
)

1 TCP connection
2 TCP connections
5 TCP connections
10 TCP connections

(a) PIR = 1 Mbit/s

•0

•0.2

•0.4

•0.6

•0.8

•1

•1.2

•0 •20 •40 •60 •80 •100 •120 •140 •160

Bucketsize (KB)

G
oo

dp
ut

 (M
bi

t/s
)

1 TCP connection
2 TCP connections
5 TCP connections
10 TCP connections

(b) PIR = 5 Mbit/s

•0

•1

•2

•3

•4

•5

•6

•0 •100 •200 •300 •400 •500 •600 •700

Bucketsize (KB)

G
oo

dp
ut

 (M
bi

t/s
)

1 TCP connection
2 TCP connections
5 TCP connections
10 TCP connections

(a) PIR = 1 Mbit/s

•0

•0.2

•0.4

•0.6

•0.8

•1

•1.2

•0 •20 •40 •60 •80 •100 •120 •140 •160

Bucketsize (KB)

G
oo

dp
ut

 (M
bi

t/s
)

1 TCP connection
2 TCP connections
5 TCP connections
10 TCP connections

Figure 4.3: Bucket size vs TCP goodput (linkspeed=10Mbit/s, RTT=50ms).

majority of the cases the trends observed regarding the e¤ect of the token bucket
size were as shown in Figure 4.3a. However, some exceptions were also observed.
These are shown in Figure 4.3b.

We �rst address the results shown in Figure 4.3a. In order to explain the
reason behind the trends in Figure 4.3a, we will use Figure 4.4. Figure 4.4 presents
a schematic overview of the e¤ect of the bucket size on TCP performance. Figure
4.4a shows the tokens borrowed over time in case of a small bucket size. In the
slow start phase of a TCP �le-transfer, TCP increases its rate quickly. The PIR is
quickly exceeded and many tokens are borrowed from the bucket. At some point
the maximum bucket size is reached, after which no more tokens can be borrowed
and packets are dropped. Due to consecutive packet drops, TCP reduces its window
multiple times. This results in a tra¢ c rate signi�cantly lower than the PIR, causing
tokens to be returned. Since the TCP sending rate drops below the PIR, the token
bucket recovers and tokens are slowly returned, until no tokens are borrowed any-
more (start of T2). After a certain period, TCP recovers and starts increasing its
sending rate such that tokens have to be borrowed again (end of T2). Only during
the T2 period goodput is �lost�, since the sending rate is lower than the PIR, while
TCP has enough data to send. This implies that the length of the period T2 has a
considerable impact on the goodput.

Figure 4.4b presents the results from the same scenario as Figure 4.4a, but
now with a larger bucket size. Since more tokens can be borrowed with a larger
bucket, it also takes longer before all tokens are returned again. Therefore, the
resulting T2 in this case is a lot smaller, which increases throughput compared to
the previous example. The time B denotes the time between the last packet drop
and the �rst time new tokens are borrowed. Note that this time is equal for both
�gures, which is determined by TCP�s congestion control mechanism and not by the

4.2 TCP Performance with token bucket policing 49

T2

Packet drop(s)

B

B

Time

To
ke

ns
 b

or
ro

w
ed

Bucket
size

Packet drop(s)

Time

To
ke

ns
 b

or
ro

w
ed

T1
T2

T3 T1 T3

Bucket
size

(a) Small bucket size (b) Large bucket size

T2

Packet drop(s)

B

B

Time

To
ke

ns
 b

or
ro

w
ed

Bucket
size

Packet drop(s)

Time

To
ke

ns
 b

or
ro

w
ed

T1
T2

T3 T1 T3

Bucket
size

(a) Small bucket size (b) Large bucket size

Figure 4.4: In�uence of bucket size on TCP packet drops.

token bucket. Whereas the rate of the tokens being returned in this case is solely
determined by the PIR, since TCP does not send anything during this period.

The phenomenon that bigger bucket sizes lead to better TCP performance was
observed in almost all scenarios. However, one of the few exceptions in trends is
shown in Figure 4.3b. At a token bucket size of 20 KB, a peak in goodput can be
seen. For 5 and 10 simultaneous TCP connections, this peak at 20kB is higher than
the goodput observed with bucket sizes of up to 150 KB. We explain this behavior
by looking at the TCP window sizes of the 20 KB and 100 KB bucket size cases
with 10 simultaneous TCP connections in Figure 4.5. Note that the higher the
window size of a TCP connection becomes, the higher the o¤ered tra¢ c rate and
burst will be. Figure 4.5b shows the results with bucket size 100 KB, in which case
synchronization of all TCP �ows occurs. All TCP connections try to increase the
window size simultaneously until the token bucket has loaned out all its tokens and
packets are dropped. Since all connections experience packet drops at the same
time, they all reduce their window size to 0 also at the same time. Therefore, no
tra¢ c is sent at all for a short time. For a bucket size of 20 KB in Figure 4.5a, this
synchronization does not occur. Packet loss a¤ects only a few of the 10 connections
and only these connections reduce their window size to zero. The other connections
can take over that bandwidth and increase their window sizes. This asynchronization
in the TCP �ows leads to a higher goodput with a bucket size of 20 KB as compared
to a bucket size of 100 KB. However, the optimal goodput is still achieved at bucket
sizes greater than 250 KB.

Number of TCP �ows: Figure 4.3a shows that a single TCP connection can
su¤er signi�cantly with a token bucket policer. In this case if very small bucket
sizes (<10 KB) are used the goodput achieved is only half the PIR. Increasing the

50 4 A dynamic token bucket policer

20 kB bucket 100 kB bucket20 kB bucket 100 kB bucket
Time (s) Time (s)

TC
P

w
in

do
w

 s
iz

e

TC
P

w
in

do
w

 s
iz

e

20 kB bucket 100 kB bucket20 kB bucket 100 kB bucket
Time (s) Time (s)

TC
P

w
in

do
w

 s
iz

e

TC
P

w
in

do
w

 s
iz

e

Figure 4.5: TCP window size dynamics with linkspeed =10 Mbits/s, RTT=50 ms,
PIR=5 Mbits/s and 10 TCP connections.

number of TCP connections sharing the token bucket reduces the bucket size needed
to reach optimum goodput in all cases. The reason behind this is that multiple
TCP connections are likely to be asynchronously a¤ected by packet loss. Thus
the connections that are not a¤ected by loss can take advantage of the situation,
improving the aggregate goodput. On the other hand a single TCP connection will
be more a¤ected by packet loss. Thus the aggregate goodput will be hampered
deterministically.

4.3 Drawbacks of a large static bucket size

From the results of the previous section we can conclude that choosing a su¢ ciently
large value for the bucket size will result in optimal goodput. However, what is
su¢ ciently large for one scenario might not be large enough for another. This
implies that in order to obtain optimal goodput for all possible cases, the size of
the bucket would have to be set to the maximum of all required bucket sizes. Using
such a large bucket size would allow large data bursts into the network, which has
the following potential drawbacks:

A. Unpredictable tra¢ c: Larger bursts imply unpredictable tra¢ c, which
makes it more di¢ cult to engineer and provision network capacity, requiring more
overdimensioning to reduce congestion.

B. Temporary congestion: Allowing larger bursts induces more congestion in
the network. Although congestion would only be temporary, large bu¤ers would be
required to contain these bursts.

C. Increased packet drops/latency: If the bu¤ers in the network are not
su¢ ciently large to contain the packets bursts allowed by the policer, packet and
throughput loss will occur. This would imply that we would be shifting the problem

4.4 A dynamic bucket size policer 51

Host 2
Host 3

100 Mbits/s

Bridge 0

Host 0
Host 1

PIR: 1 Mbit/s

PIR: 1 Mbit/s

2 Mbits/s

2 Mbits/s UDP

1 Mbit/s UDP

Bridge 1

Host 2
Host 3

100 Mbits/s
Host 2
Host 3

100 Mbits/s

Bridge 0

Host 0
Host 1

PIR: 1 Mbit/s

PIR: 1 Mbit/s

2 Mbits/s

2 Mbits/s UDP

1 Mbit/s UDP

Bridge 1

Host 2
Host 3

100 Mbits/s

Figure 4.6: Large bucket size scenario.

from the policer to the bu¤ers. On the other hand, one should bear in mind that
large bu¤ers potentially lead to higher latency and jitter, which is undesirable for
time-sensitive �ows. We illustrate this phenomenon with a speci�c scenario in our
context. This scenario is outlined in Figure 4.6.

In Figure 4.6 host 0 and host 1 are sending Poisson tra¢ c to host 2 and 3
respectively using UDP. Packets are 1500 bytes in size. Host 0 sends 1 Mbit/s and
is policed at 1 Mbit/s. Host 1 sends 2Mbit/s but is allowed only 1 Mbit/s by its
tra¢ c contract. About half of the packets from host 1 are dropped, because it is
exceeding its PIR. Figure 4.7 shows the average delay of the tra¢ c from host 0 for
di¤erent bucket sizes. It is clear that for larger bucket sizes, the �ow from host 0
experiences considerable delay (up to 350 ms), while complying perfectly with its
tra¢ c contract. This is a side e¤ect of Host 1 temporarily being allowed to burst
more tra¢ c than 1 Mbit/s into the network. This burst �lls the bu¤ers of bridge
0 and since the tra¢ c of host 2 is using the same bu¤ers, latency is introduced.
Note that at bucket sizes of 1100 KB and larger, the average delay does not increase
anymore. This is because in these cases the bu¤er limit of 56 packets is reached
in bridge 0 and further incoming packets are dropped. If bigger bu¤ers are used,
the delay will increase to a larger value. Since in practice the same policer could
also be used for non-TCP �ows, it can considerably hamper their performance by
increasing the jitter and latency. Similar behavior will also occur with TCP �ows
that only need a small bucket size. Therefore, we conclude that it is impractical to
design a policer with an excessively large static bucket size optimized only for TCP
tra¢ c.

4.4 A dynamic bucket size policer

The previous section shows that on one hand TCP goodput bene�ts from a large
bucket size, on the other hand this large bucket size has drawbacks, such as increased

52 4 A dynamic token bucket policer

•0
•50

•100
•150
•200
•250
•300
•350
•400

•0 •500 •1000 •1500 •2000
•Bucket size (kB)

D
el

ay
 (m

s)

•0
•50

•100
•150
•200
•250
•300
•350
•400

•0 •500 •1000 •1500 •2000
•Bucket size (kB)

D
el

ay
 (m

s)

Figure 4.7: Average packet delay of tra¢ c from Host 0 on the large bucket size
scenario depicted in Figure 4.6.

congestion and delay in the network. In this section we present our solution, which
aims at automatically adjusting the bucket size to �nd an attractive trade-o¤ be-
tween high goodput and non-excessive burst size. Our mechanism monitors the
response of the policed tra¢ c to packet drops and uses this information to decide
whether or not to modify the bucket size. This simple principle works elegantly for
both loss-sensitive TCP and loss-insensitive real-time �ows. For TCP tra¢ c the po-
licer detects that consequent to packet loss, TCP stops sending for too long causing
the available policing bandwidth to be under-utilized. In this case, it increases the
bucket size. For loss-insensitive real-time �ows, the policer observes that the policed
tra¢ c does not react to packet loss and the available policing bandwidth continues
being utilized as before. In this case, the policer leaves the bucket size unaltered,
avoiding situations illustrated in Section 4.3.C.

Figure 4.8 shows a graphical overview of our solution. The bucket size is initially
set to a preset minimum. As explained in Section 4.2, period T2 represents time
during which goodput is �lost�, since then the sending rate is lower than the PIR. The
dynamic token bucket policer monitors the activity in every cycle with the goal to
increase the bucket size in the next cycle such that the period T2, would be exactly
zero, leading to optimal goodput. In order to achieve this, our scheme identi�es
two relevant time periods. Period A starts at the last packet drop and ends at the
time when all tokens are depleted. Period B also starts at the last packet drop but
ends when tokens are being borrowed again. During A we deplete all tokens from
a bucket of size, let�s say, Bucket_size. Therefore, in period B we could possibly
deplete all tokens from a bucket of size (B=A)�Bucket_size. Hence, the bucket
size should be a factor B=A larger for T2 to become zero.

4.5 Simulation results 53

Time

Packet
drop(s)

T1 T2 T3

Packet drop(s)

To
ke

ns
 b

or
ro

w
ed Bucket

Size

A
B

Time

Packet
drop(s)

T1 T2 T3

Packet drop(s)

To
ke

ns
 b

or
ro

w
ed Bucket

Size

A
B

Figure 4.8: Behaviour of the dynamic bucket size policer.

In the performance assessment of this scheme we have chosen to increase the
bucket size in every consecutive cycle by only 80% of the calculated (B=A) value.
We increase the bucket size by 5% if the bucket size is already above this 80%. This
way, the optimal bucket size is obtained in a few steps, but the size is not increased
too much when sudden bursts in the tra¢ c occur.

The monitoring time of our scheme should also be limited in order to avoid
misinterpreting inactive periods as consequences of packet loss. We chose a value of
0.6 seconds for this monitoring time. If within this time all tokens are returned and
borrowed multiple times, we take the �rst occurrence of the tokens being returned
and the last occurrence of tokens being borrowed again. Furthermore, the dynamic
bucket size can only vary between two values, the minimum and the maximum
bucket size. We chose a minimum bucket size value of 10 KB and disabled the
maximum bucket size. In practice, the maximum bucket size should be set to the
absolute limit of the burst that is allowed to enter the network.

In order to prevent too large bucket sizes, the bucket size is decreased by a
percentage every �xed time period in which the bucket is not increased. We have
chosen a decrease of 5% every second.

The choice of parameters values for our scheme such as the monitoring time (0.6
s), bucket size increase (0.8 B=A) and decrease factor (5%), were estimated by initial
simulations.

4.5 Simulation results

In this section our goal is to systematically assess the performance of the dynamic
bucket size policer introduced in the previous section. We have used both real-time

54 4 A dynamic token bucket policer

(a) (b)

•0

•10
•20

•30
•40

•50
•60

•70

•6
0

-6
5

•6
5

-7
0

•7
0

-7
5

•7
5

-8
0

•8
0

-8
5

•8
5

-9
0

•9
0

-9
5

•9
5

-1
00

•Percentage goodput

•N
um

be
r o

f s
ce

na
rio

s

•0
•10
•20
•30
•40
•50
•60
•70
•80

•5
0-

60

•4
0-

50

•3
0-

40

•2
0-

30

•1
0-

20

•0
-1

0 •0

•Bucketsize oversized (kB)

•N
um

be
r o

f s
ce

na
rio

s

(a) (b)

•0

•10
•20

•30
•40

•50
•60

•70

•6
0

-6
5

•6
5

-7
0

•7
0

-7
5

•7
5

-8
0

•8
0

-8
5

•8
5

-9
0

•9
0

-9
5

•9
5

-1
00

•Percentage goodput

•N
um

be
r o

f s
ce

na
rio

s

•0
•10
•20
•30
•40
•50
•60
•70
•80

•5
0-

60

•4
0-

50

•3
0-

40

•2
0-

30

•1
0-

20

•0
-1

0 •0

•Bucketsize oversized (kB)

•N
um

be
r o

f s
ce

na
rio

s

Figure 4.9: Achieved bucket size and goodput results with the dynamic token bucket.

UDP Poisson tra¢ c and TCP data tra¢ c. With respect to the UDP tra¢ c our goal
was to overcome the drawbacks explained in Section 4.3.C. In case of a Poisson UDP
stream, our solution starts with the minimum bucket size. If the UDP rate is larger
than the PIR, the token bucket will slowly borrow tokens up to the bucket size at
which point packets are dropped. UDP will not adjust its sending rate because of the
drops and will continue exceeding the PIR. In this case, the bucket never becomes
empty and the bucket size is never increased, keeping the burstiness minimal and
the goodput optimal.

In order to assess the performance of TCP �ows we have used the same scenarios
as in Section 4.2. We focus on two aspects to evaluate our solution. First, the
goodput should be close to the con�gured PIR. Second, this goodput should not
have been achievable with a smaller bucket size than that chosen by the dynamic
token bucket policer. Below we discuss these two performance aspects.

4.5.1 Goodput

In this sub-section we discuss the performance of the dynamic bucket size policer
in terms of goodput. The goodput is expressed as percentage of PIR. A total of
156 simulation scenarios were executed. The average goodput over all tests is 92%.
Figure 4.9a groups the results of these scenarios into di¤erent goodput ranges. We
discuss these di¤erent cases below.

90-100% PIR: Almost 80% of the scenarios (124 out of 156) considered provide
goodput in the range of 90-100% of PIR. Figure 4.10a shows the behavior in these
cases. This �gure is the same as Figure 4.3a, but now the dots show the goodput
with our scheme. The goodput is always above 94%, while the bucket size is kept
to a minimum.

4.5 Simulation results 55

•0

•0.2

•0.4

•0.6

•0.8

•1

•1.2

•0 •20 •40 •60 •80

•G
oo

dp
ut

 (M
bi

t/s
)

(a)

•0

•1

•2

•3

•4

•5

•6

•0 •100 •200 •300 •400 •500 •600

•G
oo

dp
ut

 (M
bi

t/s
)

(b)

1 TCP connection
2 TCP connections
5 TCP connections
10 TCP connections

1 TCP connection
2 TCP connections
5 TCP connections
10 TCP connections

•Bucketsize (kB)•Bucketsize (kB)

•0

•0.2

•0.4

•0.6

•0.8

•1

•1.2

•0 •20 •40 •60 •80

•G
oo

dp
ut

 (M
bi

t/s
)

(a)

•0

•1

•2

•3

•4

•5

•6

•0 •100 •200 •300 •400 •500 •600

•G
oo

dp
ut

 (M
bi

t/s
)

(b)

1 TCP connection
2 TCP connections
5 TCP connections
10 TCP connections

1 TCP connection
2 TCP connections
5 TCP connections
10 TCP connections

•Bucketsize (kB)•Bucketsize (kB)

Figure 4.10: Bucket sizes and goodput achieved with the dynamic token bucket
policer in comparison to a �xed bucket size policer.

60%-90% PIR: 16% of the 156 simulations executed resulted in goodput in the
range 75-90% of PIR, whereas only 2% perform in the range of 60-75% of PIR. The
results and performance trends in these cases are illustrated in Figure 4.10b. The
�gure shows results of our proposed policing scheme in addition to the results of
Figure 4.4. It can be observed that our scheme does not get confused with the early
goodput peaks at 10 KB bucket size, since the goodput is not optimal there. For
5 and 10 TCP connections, our scheme �nds the optimal average bucket size. For
1 and 2 TCP connections, the average bucket size is a bit too low, causing a lower
goodput. To �nd out the reason for this we have to look into the details of the
algorithm used to determine the bucket size.

Figure 4.11 tracks the algorithm used to calculate the bucket size during the
course of a simulation run with 1 TCP connection. The �gure shows the dynamic
(calculated) bucket size, the tokens borrowed and the small vertical lines at time
151.5 s denote packet drops, where each line represents one drop. At time 151.5 s,
all the tokens in the bucket have been borrowed. This causes multiple packet drops,
as indicated by the blue lines. It will take up to time 153 s for all tokens to be
returned and for new tokens to be borrowed again. This implies that our dynamic
bucket policing scheme should use a monitoring time of 1.5 s to determine the new
bucket size. However, we have set this monitoring time to 0.6 seconds. This results
in the bucket size being increased at 152.1 s instead of at 153 s. The mechanism
assumes that this time is the end of T2 and calculates how large the bucket size
should be to make T2 zero. This results in a new bucket size which is insu¢ cient
for the burst in the next cycle starting at 153 s. This e¤ect repeats every cycle and
results in loss of goodput. We have noticed this problem mostly in scenarios with
a relatively large RTT (50, 100ms) and not with small RTTs (10 ms). The reason

56 4 A dynamic token bucket policer

Bu
ck

et
 s

iz
e

(K
B)

Time (s)

400000

350000

250000

200000

150000

100000

50000

151 151.5 152 152.5 153 153.5

Dynamic Bucket Size

Actual Bucket Size

Packet
DropsBu

ck
et

 s
iz

e
(K

B)

Time (s)

400000

350000

250000

200000

150000

100000

50000

151 151.5 152 152.5 153 153.5

Dynamic Bucket Size

Actual Bucket Size

Packet
Drops

Figure 4.11: Dynamic bucket size (top line), actual bucket size (bottom line) and
packet drops (vertical lines). Linkspeed: 10 Mbit/s, RTT: 50 ms, PIR 5 Mbit/s,
TCP connections: 1.

being that a monitoring time of 0.6s is relatively short for large RTTs but not so for
small RTTs. It is unclear if a larger monitoring time would be enough to solve this
issue or a stronger coupling is required between the monitoring time and the RTT.
This is a subject for future research.

4.5.2 Average bucket size

In this sub-section we address the e¢ cacy of our policing scheme in terms of min-
imizing the allowed burst into the network. The allowed burst corresponds to the
bucket size determined by the dynamic bucket size mechanism during the course
of a simulation run. Figure 4.9b quanti�es and classi�es the cases in which our
policing scheme calculates an oversized bucket size. An oversize of 10 KB, means
that the goodput achieved by the dynamic bucket size policer for this case could
have been achieved with a 10 KB lower static bucket size. It shows that in most
scenarios (64%), there is no smaller bucket size with the same goodput (0 KB bucket
oversized). In about 25% of the cases the bucket size falls within 10 KB oversize. A
handful of scenarios show a largely oversized bucket. These correspond to the cases
where the con�gured PIR is close or equal to the linkspeed. In fact, in these cases
we do not really need any policing function. The dynamic bucket policer observes
small bursts in TCP tra¢ c and interprets this as a signal to increase the bucket size,
which is completely unnecessary. This leads to an overestimation of the required
bucket size. Since this scenario can be easily identi�ed, a di¤erent strategy can be

4.6 Conclusions 57

used to resolve the problem, e.g. by completely disabling the policing function.

4.6 Conclusions

In this chapter we addressed the performance and direct interaction of TCP and a
bu¤erless token bucket policer. We �rst analyzed the in�uence of the token bucket
policer on TCP goodput for a wide variety of scenarios. The results pointed towards
using a very large bucket size (su¢ ciently large to cover all possible scenarios) as a
possible solution for improving TCP goodput. However, a large static bucket size
allows large data bursts into the network which we showed to be of major concern.
To overcome this we introduced a dynamic bucket size policer with monitoring
and estimation functions. The monitoring function continuously monitors TCP�s
reaction to packet loss. The estimation function estimates the required bucket size
to minimize collapse of TCP sending rate and therefore minimizes under-utilization
of the con�gured bandwidth.

Performance assessment of the dynamic bucket size policer was conducted
for di¤erent RTTs, link capacities, policing rates and number of persistent TCP
�ows. Results indicate that in most (80%) cases the dynamic bucket size policer
converges to the optimal token bucket size required speci�c to the scenario consid-
ered. The TCP goodput achieved was 92% of the policed rate on average.

Situations under which the dynamic policer could improve its performance were
also identi�ed. These were the ones where the policed rate is very close to the
access link capacity and the case of large RTTs. In the former case, the dynamic
policer estimates a larger bucket size than required. It misjudges small bursts as
indication of a large bucket size requirement. The large bucket size, although not
utilized, could cause problems if TCP and UDP tra¢ c are policed as an aggregate.
However, it is simple to resolve this issue. Network provisioning can easily identify
parts of the network where the policed rate is close to the access link capacity and
completely disable the policing function at these points. The other situation where
the dynamic bucket size policer performs non-optimally occurs when the RTT is
large (100 ms). In this case, the monitoring time used was sometimes too small
to adequately estimate TCP�s reaction to packet drops. Optimizing the monitoring
time as well as the interaction of the dynamic token bucket policer with network
congestion are subjects for future research.

Part II

Congestion control

59

Introduction to Part II

Congestion control in Ethernet has become synonymous with the feedback �ow con-
trol possibility provided by the IEEE 802.3x pause frames or backpressure. Most
previous work in literature provides simulation based analysis of this mechanism and
has concentrated on the extensions to the protocol and its implementation issues
([86], [29], [50]). In this part of the thesis we develop analytical models providing
insight into the in�uence of the backpressure congestion control parameters on net-
work and tra¢ c performance. These models and their analysis, focusing on di¤erent
aspects of the backpressure scheme are presented in the following chapters:

� Chapter 5 questions the use of the backpressure mechanism in Ethernet when
the widely used higher layer protocol TCP already has its own method to
deal with congestion. To address this issue we develop a Markov model with
two nodes in tandem capturing the essentials of Ethernet congestion control.
Furthermore, packet drops are coupled to reduction in input tra¢ c rate and
successful transmissions result in an increase of the input tra¢ c rate, cap-
turing the Additive Increase and Multiplicative Decrease (AIMD) aspect of
TCP�s congestion window. The analysis presented in the chapter provides
useful insight into the e¤ect of bu¤er sizes, congestion detection thresholds
and burstiness in the TCP input tra¢ c stream on the performance.

� Chapter 6 focuses in more detail on the e¤ects of the Ethernet congestion-
control parameter-values. The Ethernet backpressure mechanism uses two
thresholds, one to signal the onset of congestion and the other to signal its
end. These two threshold positions, on one hand, can prove very powerful
in avoiding congestion by regulating the incoming tra¢ c rate. On the other
hand, their positions greatly in�uence the achieved throughput, delay and the
signaling overhead. The proper tuning of these parameters is critical to the
success of the backpressure congestion control method. Chapter 6, designs
and analyzes a �uid �ow queueing model of the Ethernet congestion control
mechanism in a single node. This model is analytically solved by setting
up Kolmogorov equations, solving them using spectral expansion and �nally
�nding su¢ cient constraints to solve for the unknowns in the solution.

� Chapter 7 presents a numerical performance study of the backpressure mech-

61

62

anism using the model developed in Chapter 6. In particular, the in�uence of
the congestion control thresholds on network and tra¢ c performance is demon-
strated, thereby, addressing an essential design criterion for the backpressure
scheme. Furthermore, the chapter also demonstrates how the required trade-
o¤between for example throughput, delay and signaling overhead can be made
by a network operator.

Chapter 5

Interaction of Ethernet and TCP
congestion control

An interesting and essential aspect in studying the performance of the Ethernet
congestion control mechanism is to understand its in�uence and interaction on higher
layer application tra¢ c, especially since the most widely used transport protocol,
TCP, has its own congestion control mechanism. Considerable work has been done
and is ongoing that aims at understanding and predicting the performance of TCP
under various situations and di¤erent network parameters. Use of an additional
underlying hop-by-hop congestion control scheme adds another complication to this
study. On one hand, the extra bu¤ering of packets introduced by hop-by-hop control
can avoid unnecessary TCP rate �uctuations. On the other hand, if the congestion
cannot be solved by hop-by-hop control it might unnecessarily delay the reaction of
TCP. Another aspect that needs to be studied before the hop-by-hop mechanism
can be implemented is the in�uence of the various network and tra¢ c parameters
on the performance. The throughput of a TCP source is known to be inversely
proportional to the round trip time and the square root of the packet loss probability.
This relation which is widely known as the �root p�law (see [58]) might not be valid
for the combination of TCP and hop-by-hop �ow control.

The Ethernet hop-by-hop congestion control mechanism has been evaluated with
simulations in the literature. However, all of this previous work ([55], [85], [66], [22])
lacks guidelines for con�guring the congestion control parameters of the scheme. An-
other class of (limited) literature concentrates on modi�cations of the protocol. For
example, [29] proposes to distinguish the interpretation of the backpressure/pause
message for di¤erent tra¢ c classes. There is also a signi�cant amount of work done
on ATM (Asynchronous Transfer Mode) based hop-by-hop �ow control as in [60]
and [52]. However, most of this work is based on negotiating transmission rates
between the congested node and its upstream neighbors. The proposed mechanisms
use resource management cells which do not exist in Ethernet.

In this chapter we develop a Markovian model that captures the interaction

63

64 5 Interaction of Ethernet and TCP congestion control

of Ethernet hop-by-hop congestion control with TCP end-to-end congestion control.
This model applies to TCP versions which use packet loss as a measure of congestion
in the network. We assess the validity of the model by comparing it to extensive
simulations. The results demonstrate the in�uence of various parameters on the
performance of the schemes and provide guidelines for the choice of parameters such
as bu¤er thresholds for congestion detection.

The rest of the chapter is organized as follows. In Section 5.1, we introduce the
two congestion control mechanisms. The Markov model describing the integration
of the hop-by-hop and the end-to-end congestion control mechanisms is presented in
Section 5.2. The simulation model and parameter values used to obtain the results
are described in Section 5.3. Section 5.4, shows the performance results both with
the Markov model as well as the simulations, which demonstrate the in�uence of
various network and tra¢ c parameters. The parameters include bu¤er thresholds for
congestion detection, the network round trip time (RTT) and the tra¢ c burstiness.
The conclusions are presented in Section 5.5.

5.1 IEEE 802.3x hop-by-hop and TCP end-to-end
�ow control

The main goal of a hop-by-hop congestion control mechanism is to contain tem-
porary bursts and congestion by utilizing network resources (such as bu¤er space).
The hop-by-hop nature of the congestion control scheme should prevent that con-
gestion escalates to higher layers, for example TCP. In order to model and assess
whether the interaction of hop-by-hop with end-to-end congestion control will result
in improved network performance, we �rst need to understand the details of each
of these mechanisms separately. These two di¤erent schemes as well as some initial
modeling concepts are described in the subsections below.

5.1.1 IEEE 802.3x backpressure based hop-by-hop �ow con-
trol

The backpressure scheme de�ned in IEEE 802.3x (see [76]), is intended to provide
�ow control on a hop-by-hop basis by allowing ports to �turn o¤�their upstream
link neighbors for a period of time. In the case of a half-duplex link this is realized
by sending a jamming signal. The end-station perceives the medium as busy, stops
transmitting and backs-o¤. For the case of a full-duplex connection, the IEEE
802.3x standard de�nes a MAC layer �ow control mechanism. This mechanism is
based on a special frame called �pause frame�in which the pause period is speci�ed.
The end station or router receiving the pause frame looks at the pause period and
does not transmit or attempt transmission for that amount of time. Alternatively

5.1 IEEE 802.3x hop-by-hop and TCP end-to-end �ow control 65

•λ µ1 or µ•2

µ1 > µ2

•ν

T1 T2

•Node 1 with queue 1
•Size: B•1•packets

Node 2 with queue 2
Size: B•2•packetsDown

•Up

T1 > T2
•λ µ1 or µ•2

µ1 > µ2

•ν

T1 T2

•Node 1 with queue 1
•Size: B•1•packets

Node 2 with queue 2
Size: B•2•packetsDown

•Up

T1 > T2

Figure 5.1: Hop-by-hop �ow control.

a ON/OFF pause messages can be sent signaling the beginning and end of the
�transmission pause�phase.

This mechanism is illustrated by Figure 5.1. When the occupancy of queue 2
exceeds T1 it can signal its upstream node 1 to stop all data transmission. When
the queue occupancy of the congested node 2 drops below a low threshold T2 the
upstream neighbor can start transmission again at usual rate �1. The Markov
model used to describe this mechanism in this chapter assumes that on receiving
the congestion signal, the upstream neighbor lowers its rate to a generic rate �2
instead of strictly stopping all transmissions. A positive value for �2 may mimic
the delay in reception of congestion messages by the upstream nodes by allowing
possible incoming packets into a congested queue even after a congestion message
has been sent.

It is clear from Figure 5.1 and the explanation above that when queue-2 occu-
pancy is above T1; the service rate of queue 1 is �2: Similarly, when the number of
packets in queue 2 is below T2, the service rate of queue 1 is �1: In the region be-
tween T1 and T2 it can be either �1 or �2, depending on the last threshold that was
crossed. For example, when the queue-2 occupancy drops from above T1 to below
T1, queue 1 continues to transmit at �2. Similarly, a rise in queue-2 occupancy from
below T2 to above T2 implies that queue 1 continues transmission at rate �1. We
will denote the state of queue 2 corresponding to a high transmission rate (�1) of
queue 1 as the up or �1�state and that corresponding to �2 as the down or �2�state.

5.1.2 TCP end-to-end �ow control

The widely used transmission control protocol (TCP), works on the principle that
end systems should react to congestion anywhere in an end-to-end data path by
adjusting their transmission rates to avoid total collapse. The TCP congestion
control mechanism is a well studied subject and is often modeled as an Additive
Increase and Multiplicative Decrease (AIMD) scheme (see [87], [18] and [6]). The
TCP sending rate is controlled using a window. The window is halved in the event
of a packet loss and increased by one packet upon acknowledgment of reception of

66 5 Interaction of Ethernet and TCP congestion control

all packets belonging to the current window. In this chapter, we assume that the
packets sent in one window follow a Poisson process with the rate corresponding to
the window size.

A single TCP source being an unrealistic scenario, we aim at modeling multi-
ple TCP streams as input sources to a system with hop-by-hop �ow control. An
approach to modeling multiple TCP streams using Markov chains is to model each
stream separately with its own AIMD characteristics. This approach has clear dis-
advantages with respect to the scalability of the Markov chain transition state space
as observed in, e.g., [82]. An alternative to this approach is to model the tra¢ c ag-
gregate of TCP streams with a more generic AIMD mechanism. It is worth noting,
though, that this option has the drawback that it is di¢ cult to predict the exact
sending rates, among which, the aggregate TCP streams will switch, when detect-
ing packet losses. This complication arises from the fact that packet losses need not
a¤ect all TCP streams as observed in [82] and [14].

The arrival process of the aggregate input tra¢ c stream is considered to be a
Markov-modulated Poisson process (see [24]) with arrival rates varying between N
di¤erent values �1 to �N , where, �N < �N�1 < . . .< �1. The state of the input
tra¢ c stream is represented by a, so that the corresponding tra¢ c rate is �a where
a varies from 1 to N . Every time there is a packet drop, the input tra¢ c state
increases to twice its original value, causing a signi�cant drop in the tra¢ c rate
(unless 2a > N , in which case the input rate drops to �N). The input tra¢ c state
decreases by one step at a rate equal to 1=RTT. This corresponds to an increase
in tra¢ c rate, the increase being dependent on the values of the �as. This simple
approach incorporates the basic AIMD nature in the input tra¢ c.

The di¤erent �as represent the possible sending rates of an aggregate of multiple
TCP streams. It is not straightforward to specify the value of N , i.e., the total
number of possible tra¢ c rates, nor the value of the �as. This is so, because the
aggregation of multiple TCP streams, each with its own AIMD characteristics can
result in very unpredictable tra¢ c characteristics. This unpredictability is caused by
the varying number of packet drops and the unknown proportion in which they a¤ect
the multiple TCP streams. One extreme case could occur when the packet drops
a¤ect all streams equally, leading to the phenomenon called �global synchronization�
[26]. In this case the AIMD nature of a single �ow is preserved. The other extreme
could be that only one TCP stream is a¤ected. Our approach to study the impact
of such tra¢ c will be to vary the value of N , thus increasing the granularity of the
input process and observe the trends in the results.

5.2 Integrated model of hop-by-hop and end-to-end �ow control 67

λ1

λ2

•λ•3

•λ•4...
•λa
•.

•λ•N

•ν
Packet
loss
instance

Acknowledgements
at the rate 1/RTT

Buffer size B1

Buffer size B2

µ 1 or µ 2

µ 1 > µ 2
Down

•Up

T1 T2

...

λ1

λ2

•λ•3

•λ•4...
•λa
•.

•λ•N

•ν
Packet
loss
instance

Acknowledgements
at the rate 1/RTT

Buffer size B1

Buffer size B2

µ 1 or µ 2

µ 1 > µ 2
Down

•Up

T1 T2

...

Figure 5.2: Integrated hop-by-hop and end-to-end �ow control model.

5.2 Integrated model of hop-by-hop and end-to-
end �ow control

In this section, our goal is to integrate the models for hop-by-hop �ow control and
end-to-end TCP�ow control. The backpressure based hop-by-hop congestion control
mechanism, works by tuning the bu¤er occupancy per hop to avoid packet drops
as much as possible. The TCP �ow control on the other hand, reduces the rate of
tra¢ c into the network when packet drops may occur anywhere in an end-to-end
data path. In Section 2, we have explained these two mechanisms in detail. The
integrated model used for TCP input tra¢ c along with backpressure hop-by-hop
�ow control is shown in Figure 5.2. It consists of augmenting the model for hop-by-
hop �ow control depicted in Figure 5.1 with a reactive Markov-modulated arrival
process that captures the AIMD behavior of multiple TCP streams. If a packet is
lost at either queue 1 or queue 2, the state of the arrival process is adjusted to twice
its current value. For example, if this occurs while the TCP rate is �3, the new rate
is �6. On the other hand, the state of the arrival process is decreased by one level
on average every 1/RTT time units.

5.2.1 Transition equations

Below we de�ne the states of the system shown in Figure 5.2. Clearly, the resulting
process is also (continuous time) Markovian. The state of the system is represented
by (i; j; k; a), which implies i packets in queue 1, j packets in queue 2, state k �up
(1) or down (2) �for the second queue and state a for the TCP tra¢ c rate (varying
from 1 to N). The maximum number of TCP sending rate levels is N . For clearness
of presentation we enumerate the di¤erent types of transitions.

68 5 Interaction of Ethernet and TCP congestion control

1. (i; j; k; a) �a�! (i+ 1; j; k; a);

2. (B1; j; k; a) �a�! (B1; j; k; 2a); if 2a � N ;

3. (B1; j; k; a) �a�! (B1; j; k;N); if 2a > N ;

4. (i; j; k; a) ��! (i; j � 1; k; a), if j � 1; j 6= T2;

5. (i; T2; k; a) ��! (i; T2 � 1; 1; a); if 1 � T2 � B2;

6. (i; j; 1; a) �1�!
(i� 1; j + 1; 1; a); if j 6= B2; i � 1;

7. (i; j; 2; a) �2�!
(i� 1; j + 1; 2; a); if j 6= B2; i � 1;

8. (i; T1; 1; a) �1�!
(i� 1; T1 + 1; 2; a); if T1 < B2; i � 1;

9. (i; B2; 1; a) �1�!
(i� 1; B2; 1; 2a); if 2a � N; i � 1;

10. (i; B2; 1; a) �1�!
(i� 1; B2; 1; N); if 2a > N; i � 1;

11. (i; B2; 2; a) �2�!
(i� 1; B2; 2; 2a); if 2a � N; i � 1;

12. (i; B2; 2; a) �2�!
(i� 1; B2; 2; N); if 2a > N; i � 1;

13. (i; j; 1; a) 1=RTT
����!

(i; j; 1; a� 1); a > 1:

Transition equation 1 implies that arrivals into the �rst queue occur at a rate �a.
Equations 2 and 3 correspond to losses when queue 1 is full, while simultaneously
increasing the input process state by a factor of two. Equation 3 in addition implies
that if the calculated increase in the state of the input tra¢ c is more than N then
the state will drop to state N . Equation 4 implies departures from the second queue
occur at rate � as long as the second queue is non empty. Equation 5 ensures
that when a departure from the second queue coincides with the queue occupancy
dropping below the low threshold T2, then the state of queue 2 changes into �1�(up).
Equations 6 to 8 are about departures from queue 1 and simultaneous arrivals into
queue 2. This happens at rate �1 if the state of queue 2 is �1�or at rate �2 if the
state of queue 2 is �2�. However, when a departure from queue 1 and simultaneous
arrival into queue 2 coincides with an increase of the queue occupancy of queue 2
from T1 to T1 + 1 then the state of queue 2 simultaneously changes to �2�(down).
It is important to note that if T1 is set equal to B2 then e¤ectively hop-by-hop
�ow control is not activated. Transition equations from 9 up to 12 are similar to 6
through 8, but with the additional condition that queue 2 is full when departures
from queue 1 arrive into queue 2. This implies that packets will be lost and this
will simultaneously a¤ect the state of the input process and trigger a lowering of
the tra¢ c rate (increase by a factor of 2 of the state descriptor a). Equation 13
deals with an increase of the TCP tra¢ c rate. The RTT determines the rate at
which acknowledgements arrive and corresponds to the increase in TCP window
size, therefore increasing the rate of the input process.

5.2 Integrated model of hop-by-hop and end-to-end �ow control 69

5.2.2 Performance measures

By �(i; j; k; a) we denote the stationary probabilities obtained after solving the sys-
tem � �Q = 0 and � � e = 1, where Q is the transition matrix of the above described
Markov model and e is a column vector with all entries equal to 1. Then, the
expected number of packets in queue 1 is

E[Queue 1] =
X
i

i
X
j;k;a

�(i; j; k; a) ;

and the expected number of packets in queue 2 is

E[Queue 2] =
X
j

j
X
i;k;a

�(i; j; k; a) :

From Little�s law, the expected waiting time (that is, the time spent in the queue,
including transmission) of packets in queue 1 is

E[W1] =
E[Queue 1]
�e�ec;1

;

where, �e�ec;1 is the e¤ective arrival rate at queue 1 and is given by (using the PASTA
property),

�e�ec;1 =
NX
a=1

�a
X
i;j;k
i<B1

�(i; j; k; a) .

In addition, let us denote the e¤ective loss rate at queue 1 by �loss;1: This can be
computed by

�loss;1 =
NX
a=1

�a
P
j;k

�(B1; j; k; a) .

The loss probability of queue 1 is

P1 =
�loss;1

�e�ec;1 + �loss;1
.

The expected waiting time of customers in queue 2 is

E[W2] =
E[Queue 2]
�e�ec;2

,

where �e�ec;2 is the e¤ective arrival rate at queue 2 and by using conditional PASTA
is given by

�e�ec;2 = �1
X

i;j;a:i>0
j<B2

�(i; j; 1; a) + �2
X

i;j;a:i>0
j<B2

�(i; j; 2; a):

70 5 Interaction of Ethernet and TCP congestion control

Let us denote the loss rate at queue 2 by �loss;2:

�loss;2 = �1
X
i;a
i>0

�(i; B2; 1; a) + �2
X
i;a
i>0

�(i; B2; 2; a):

The loss probability of queue 2 is

P2 =
�loss;2

�e�ec;2 + �loss;2
.

Finally, the net throughput of the entire system can be expressed in di¤erent ways:

Throughput = �e�ec;2

= �e�ec;1 � (1� P2)

= � �
X
j>0
i;j;k;a

�(i; j; k; a):

5.3 Simulation model and mapping parameters

In the previous sections, we have presented the Markov model of the interaction of
the Ethernet hop-by-hop �ow control and the TCP end-to-end �ow control mech-
anisms. In many ways this model is a simpli�cation of reality. For TCP, only the
main characteristics were included in order to reduce the model complexity. To as-
sess how close the model comes to reality, a simulator containing a network model
with 2 nodes was used. Figure 5.3 shows the simulation model. The OMNeT++
simulator (see [2]) was used to model the Ethernet Bridge, which includes the stan-
dard Ethernet mechanisms such as MAC address learning and forwarding, and the
hop-by-hop backpressure signal. In the simulations, TCP tra¢ c was generated using
the NS-2 TCP stack ([1]). The two di¤erent simulation environments were combined
with LibSynk ([61]) as shown in Figure 5.3.

It is worthwhile to mention the di¤erences between the simulation model and
the Markov model.

� The Markov model assumes exponential service times whereas in the simula-
tion these are �xed and deterministic. The time it takes to transmit a packet
is computed using the packet size and the link speed. We have used link
speeds, which would lead to the same number of packets being processed, as
the average service times in the Markov model.

� Another aspect which is not explicitly taken into account by the Markov model
is the dependency of the RTT on the maximum (possible) burst size. The RTT
governs the maximum window size and thus the maximum rate. However, this

5.4 Results 71

Libsynk

NS2 process NS2 processOMNeT++ process

Ethernet
bridge

Ethernet
bridge

NS TCP
Sender

NS TCP
SenderB1 B2T1 T2Link A Link B Link C

Libsynk

NS2 process NS2 processOMNeT++ process

Ethernet
bridge

Ethernet
bridge

NS TCP
Sender

NS TCP
SenderB1 B2T1 T2Link A Link B Link C

Figure 5.3: Simulation set-up.

is expected to become noticeable only when there are few TCP �ows active,
which is not the scenario we aim for. When multiple TCP �ows are active,
this phenomenon is less relevant.

� The Markov model does not model the slow start behavior of TCP �ows.

� The input process in the Markov model is a Markov-modulated Poisson process
(see [24]). TCP packets sent within a window do not resemble a Poisson
process. Still the Markov model captures high and low sending rates and their
adaptation to network congestion.

In order to execute and compare the tests with the Markov model and the sim-
ulation model we �rst need to map the parameters from one onto the other. For
both models we have used B1 = 10 and B2 = 20 packets. For the relation between
the input tra¢ c sending rates i.e., the �as and the simulated TCP tra¢ c scenario
we �xed the link speed of Link A to �1: Note that for the Markov model arrivals
occur according to a stochastic point process, so that the actual in�ow of packets
may exceed the speci�ed rates for some periods of time. We have executed simu-
lations with di¤erent scenarios for �le downloads and compared the results against
the Markov model.

5.4 Results

In this section we present the results from the Markov model and the simulation
model. The goal is to obtain a better understanding of the e¤ect of various network
and tra¢ c related parameters on the interaction of the hop-by-hop and end-to-end
congestion control schemes. This comparison also helps in assessing the validity
of the Markov models. We have investigated the in�uence of three main aspects.
The �rst aspect being the di¤erent steps in the input process, which determine the
granularity of bursts of the input tra¢ c stream. The second aspect is the RTT, which

72 5 Interaction of Ethernet and TCP congestion control

in�uences the rate at which the input process recovers from loss; the third aspect is
the choice of thresholds. The performance measure used is TCP-level throughput,
relating to successfully transmitted packets, often also referred to as goodput. The
graphs plot the expected increase in TCP throughput with the use of hop-by-hop
�ow control as compared to TCP without any additional form of �ow control. For
all these di¤erent aspects we compare the trends observed in the Markov model
with simulations for di¤erent tra¢ c download scenarios. Having incorporated most
of the relevant aspects into the Markov model, the results aim at showing consistent
trends, both with the Markov model and the simulations.

5.4.1 Scenarios

Since the main goal of hop-by-hop �ow control is to contain temporary congestion,
we have looked at scenarios with bursty tra¢ c input. It is important to note that
in our model and the simulations we assume �nite bu¤er capacity i.e., B1 = 10 and
B2 = 20 packets. For the Markov model we have used either N = 2 or N = 3. In
all cases �N = 1 and di¤erent values for �1 and, if N = 3 for �2, are considered.
The other parameters are as follows �1 = 100; �2 = 2 and � = 15 packets per
second. The corresponding simulation scenario considered is with (see Figure 5.3)
link speeds of links B and C equal to 100 and 15 packets per second respectively,
which translates into 1200 kbps and 180 kbps. The capacity of link A is varied along
with �1. The TCP Reno version is used for the simulations with packet length as
well as MTU equal to 1526 bytes.

5.4.2 Round trip time

The round trip time has an important in�uence on the performance of TCP. Since
the RTT dictates the rate at which acknowledgements are received, it in�uences
the way in which the window and thus the TCP sending rate is increased. Thus,
the RTT provides the key to recovery of TCP streams from losses. In this section
our goal is to study its in�uence in conjunction with hop-by-hop �ow control. This
subsection shows the results for varying RTT. For the Markov model we use N = 2,
�2 = 1 and varying values for �1. Similarly, for the simulation model we vary the
capacity of link A in Figure 5.3. The tra¢ c scenario used for the simulations is 8
�ows where each �ow is sending an 80 KB �le with 1 second intervals. The RTT
is increased by introducing additional link delay. Figure 5.4 plots the percentage
increase in throughput on using hop-by-hop �ow control in combination with TCP
as compared to TCP alone.

It can be observed from Figure 5.4 that as the RTT increases, the throughput
bene�t with the use of hop-by-hop �ow control also increases. This general trend
was also observed with various other simulation scenarios with smaller numbers of
TCP �ows and varying �le sizes. In order to explain this, it is important to note that

5.4 Results 73

•0

•5

•10

•15

•20

•25

•30

•35

•40

•0.05 •0.1 •0.5 •1 •1.5

•Round trip time (sec)

•P
er

ce
nt

ag
e

in
cr

ea
se

 in
 th

ro
ug

hp
ut

 (
%

)
Sim •(Link A •50 packets/s)

•Markov Model λ1 = 50

Sim (Link A 25 packets/s)

•Markov Model λ1 = 25
Sim (Link A 18 packets/s)

•Markov Model λ1 = 18
Sim (Link A 16
packets/s)

•Markov Model
λ1 = 16

•0

•5

•10

•15

•20

•25

•30

•35

•40

•0.05 •0.1 •0.5 •1 •1.5

•Round trip time (sec)

•P
er

ce
nt

ag
e

in
cr

ea
se

 in
 th

ro
ug

hp
ut

 (
%

)
Sim •(Link A •50 packets/s)

•Markov Model λ1 = 50

Sim (Link A 25 packets/s)

•Markov Model λ1 = 25
Sim (Link A 18 packets/s)

•Markov Model λ1 = 18
Sim (Link A 16
packets/s)

•Markov Model
λ1 = 16

Figure 5.4: Increased throughput with the hop-by-hop �ow control and its depen-
dence on round trip time.

with hop-by-hop �ow control we use more bu¤er space, so that there will in general
be fewer packets lost. When the RTT is short, TCP recovers quickly from loss and
switches back to a faster rate much sooner than when the RTT is long. Thus with
a short RTT the congestion level is constantly rather high, ruling out any further
optimization. When the RTT is long, the impact of packet loss is greater, since
it takes longer to recover from losses. At loss instances, the fact that hop-by-hop
�ow control causes less packet losses, provides a visible and signi�cant bene�t. As
there is less loss with the use of hop-by-hop �ow control, the TCP sending rate is
better adjusted to network resources. With hop-by-hop �ow control TCP lowers its
sending rate only when the resources (bu¤er space) are completely exhausted, thus
avoiding unnecessary �uctuations in its sending rate.

The Markov model captures the general trend of increase of throughput with
increase of RTT. However it seems that the Markov model is more accurate with
the trend for higher load �1=�: This can be explained as follows. Since the number
of TCP �ows and the tra¢ c scenario is kept constant in the simulations, low values
of link speeds (�1) increase the chance that the link capacity is always utilized to
its maximum due to excessive load. For greater link speed values, the same tra¢ c
scenario might not provide enough load to constantly send at a rate equal to the link
speed irrespective of the amount of packet drops. Variations in the tra¢ c sent on link
A with simulations brings it closer to the Poisson assumption in the Markov model,
while constant and complete utilization of link A, makes it more deterministic.

74 5 Interaction of Ethernet and TCP congestion control

•0

•2

•4

•6

•8

•10

•12

•14

•7,7 •7,6 •7,5 •7,4 •7,3 •7,2 •7,1

•Thresholds (High,Low)

•T
hr

ou
gh

pu
t i

n
pa

ck
et

s
pe

r s
ec

•Markov Model λ1 = 25

Sim (Link A 25 packets/s)

•0

•2

•4

•6

•8

•10

•12

•14

•7,7 •7,6 •7,5 •7,4 •7,3 •7,2 •7,1

•Thresholds (High,Low)

•T
hr

ou
gh

pu
t i

n
pa

ck
et

s
pe

r s
ec

•Markov Model λ1 = 25

Sim (Link A 25 packets/s)

Figure 5.5: Results with varying low threshold values while the high threshold is
kept constant.

5.4.3 Thresholds

In this section we study the in�uence of the thresholds T1 and T2. The scenario
considered is the same as in the previous section but now with �1 = 25. In Figure
5.5 the high threshold T1 is kept constant and the lower threshold T2 is varied. In
Figure 5.6 the placement of the threshold is varied while keeping T1 = T2.

From Figure 5.5 we observe the general trend that the throughput tends to
decrease as the low threshold T2 is placed further away from T1: At the same time
it is important to note that this di¤erence is very small. If one were to consider
the overhead of the hop-by-hop �ow control messages sent every-time the thresholds
were crossed, it would be preferred to have the thresholds placed far apart. Figure
5.6 varies the threshold values from 2 to B2 keeping T1 = T2. The results indicate
that the thresholds should not be placed too close to B2 as around this value,
the performance degrades signi�cantly. The trends shown in Figures 5.5 and 5.6
were also observed with other values of �1: The optimum in our experiments was
always about 70-80% of bu¤er size. However, it should be kept in mind that all the
additional tests were done with same values of �2 and the same delay on link A.

5.4.4 Granularity of bursts

It was explained in the previous sections that for a given TCP tra¢ c scenario it is
di¢ cult to estimate the value of N and the various �as for the Markov model. This
complication arises from the fact that the aggregate tra¢ c behavior of multiple TCP
streams is highly complex, since there might be no consistency in the �uctuation of
tra¢ c rates of the various TCP streams. Our goal in this section is to study the

5.4 Results 75

•0

•2

•4

•6

•8

•10

•12

•14

•10 •9 •8 •7 •6 •5 •4 •3 •2
•Equal high and low thresholds

•T
hr

ou
gh

pu
t i

n
pa

ck
et

s
pe

r s
ec

•Markov Model λ1 = 25

Sim (Link A 25 packets/s)

•0

•2

•4

•6

•8

•10

•12

•14

•10 •9 •8 •7 •6 •5 •4 •3 •2
•Equal high and low thresholds

•T
hr

ou
gh

pu
t i

n
pa

ck
et

s
pe

r s
ec

•Markov Model λ1 = 25

Sim (Link A 25 packets/s)

Figure 5.6: Results showing varying choice of thresholds with high threshold kept
equal to the low threshold.

in�uence of the granularity of the variations in TCP sending rate on the performance
of hop-by-hop �ow control. For the Markov model this implies that we increase N
and introduce corresponding intermediate values for �a. We have compared the
results of the Markov model with di¤erent TCP simulation tra¢ c scenarios. We
plot the results with N = 2 and N = 3. It is important to mention that the values
and trends observed with higher values of N did not show extreme di¤erences from
N = 3. We observed that only N = 2 provides signi�cantly higher throughput
values as compared to other values of N . For the results shown in Figure 5.7, we
have always used �1 = 50 and �N = 1. For N = 3; we have used �2 = 25: We have
observed in additional tests that �a being linear or non-linear in a does not have a
major impact on the results. The comparison presented with di¤erent simulation
scenarios also helps understand the reason behind the di¤erence in performance of
the tra¢ c scenarios. The simulation scenarios include the previous results with 8
TCP �ows sending �le sizes of 80 KB every second and an alternative scenario where
8 �ows are used to send in�nite �le sizes, i.e., there is always data to send.

It can be observed from Figure 5.7 that the simulations with idle times show
far greater bene�t with the use of hop-by-hop �ow control as compared to the
simulations where there is always in�nite data to be sent. The reason behind this
di¤erence is not only the level of congestion caused by the two scenarios but also
the di¤erent burstiness of their tra¢ c characteristics. The scenario with idle times
provides hop-by-hop �ow control the opportunity to bu¤er packets from the high
rate preceding the idle time, instead of dropping them. During the idle time, the
bu¤ered packets can be sent directly rather than waiting for retransmissions. So
hop-by-hop �ow control manages to smoothen the TCP sending rate. However,
with �les of in�nite sizes there is always data to send, also the level of congestion

76 5 Interaction of Ethernet and TCP congestion control

•0

•5

•10

•0

•5

•10

•15

•20

•25

•30

•35

•40

•0.05 •0.1 •0.5 •1 •1.5 •2
•Round trip time (sec)

•Markov Model, N=3

•Sim•with idle times

•Sim •infinite file sizes

•P
er

ce
nt

ag
e

in
cr

ea
se

 in
 th

ro
ug

hp
ut

 (
%

)
•Markov Model, N=2

•0

•5

•10

•0

•5

•10

•15

•20

•25

•30

•35

•40

•0.05 •0.1 •0.5 •1 •1.5 •2
•Round trip time (sec)

•Markov Model, N=3

•Sim•with idle times

•Sim •infinite file sizes

•P
er

ce
nt

ag
e

in
cr

ea
se

 in
 th

ro
ug

hp
ut

 (
%

)
•Markov Model, N=2

Figure 5.7: E¤ect of input (TCP) tra¢ c sending rate granularity.

is far too high to be bridged by extra bu¤ering. There will still be drops and it will
result in �uctuations in TCP sending rate. Apparently due to the multiple streams
the drop in the aggregate sending rate is not that great. This phenomenon can
also be better understood by looking at the results from the Markov models. The
Markov model with 2 input steps, follows the trends of the simulation scenario with
idle times whereas the more granular input tra¢ c steps in the Markov model follows
trends of the simulations without any idle times. From these results it is evident
that when the TCP streams react in granular steps to loss instead of extreme rates,
the extra bu¤ering has limited impact. In other words, when TCP itself smoothens
out tra¢ c due to congestion, hop-by-hop �ow control has nothing more to add. The
simulations and the Markov model do however show some very di¤erent results with
large �le sizes for low RTTs. We have observed higher packet loss in the simulations
for RTT=0.1 sec. The reason for this could be that many packets are lost a¤ecting
all streams at the same time, providing bursts in the TCP input tra¢ c which the
hop-by-hop �ow control manages to compensate for with extra bu¤ering.

5.5 Conclusions

In this chapter we have modeled the interaction of the IEEE 802.3x hop-by-hop
congestion control mechanism with TCP end-to-end congestion control. We have
introduced a Markov model and compared it with simulations of a real TCP stack.
The Markov model aims at capturing the interaction of hop-by-hop with TCP con-
gestion control for multiple TCP streams and their aggregate tra¢ c behavior. It
does not aim at modeling details of a single TCP �ow. The results indicate that
the model manages to capture the qualitative performance trends. Only in some

5.5 Conclusions 77

speci�c cases where backpressure is not used, certain TCP e¤ects and packet drop
patterns cause an unexpected degradation in throughput performance. With simu-
lation, these cases show an unexpected increase in the bene�t of using hop-by-hop
�ow control.

The model also provides useful insight in the e¤ect of various network and con-
gestion control mechanism parameters on the results. Studying the in�uence of
thresholds for the hop-by-hop congestion control scheme, we have observed that for
the scenarios considered, setting the high and low thresholds close to each other is
most optimal. The choice of the threshold should be at 70-80% of the bu¤er size.
This percentage should be adjusted if there is signi�cant transmission delay on the
link to which the congestion messages are sent. Setting the thresholds far apart
from each other did not show signi�cant degradation in performance. Considering
the fact that we did not model the overhead in sending the congestion message on
the downstream tra¢ c, it is probably advisable to set the thresholds further from
each other (with the additional constraint that the low threshold does not coincide
with empty bu¤er).

The in�uence of the RTT on the performance was also studied. It can be con-
cluded from the results that increasing the RTT provides greater bene�t with the
use of hop-by-hop congestion control along with TCP. Since the RTT determines
the increase in TCP sending rate after a packet loss, longer RTTs will delay TCP�s
recovery from loss. In these cases hop-by-hop �ow control bu¤ers avoid unnecessary
packet loss thus reducing unnecessary long reductions in TCP sending rate. We also
observed that the greater the load or congestion level, the less the in�uence of the
RTT on the results as well as that of hop-by-hop congestion control. Short RTTs
allow TCP to recover very quickly from packet loss and almost always keep sending
at a high tra¢ c rate thus causing extreme congestion. It is di¢ cult to solve extreme
congestion if the input tra¢ c rate is not adapted. It is also important to note that
since the RTT controls the maximum window size, a very large value of RTT will
force TCP �ows to send at such a low rate that there will be no congestion at all.
In these cases again hop-by-hop �ow control will not provide any real bene�ts.

Burstiness and the level of congestion de�nitely play a role in the performance
improvement of any congestion mechanism. We have studied this aspect by looking
at results from the Markov model with extreme di¤erences in input tra¢ c rate
and with more granular functions and comparing them with 2 distinct simulation
scenarios. TCP tra¢ c scenarios with idle times between �les show the largest bene�t
with the use of hop-by-hop congestion control. The Markov model with extreme
bursty changes in tra¢ c rate follows closely these trends in the simulations. When
the tra¢ c has idle times, the hop-by-hop congestion control helps in smoothing out
tra¢ c and avoids drops and unnecessary retransmissions. However, when there are
no idle times and there is always tra¢ c to send, TCP end-to-end congestion mostly
adapts well to the bottleneck, thus use of hop-by-hop control does not provide
signi�cant bene�t. There are some exceptions when certain combinations of the

78 5 Interaction of Ethernet and TCP congestion control

RTT and TCP parameters cause signi�cant drops that can possibly be avoided by
using hop-by-hop control. These are subjects for future research.

Chapter 6

A �uid queue model of Ethernet
congestion control

In Chapter 5 we modeled the interaction of Ethernet congestion control with TCP
using a tandem queue Markov model. In this Chapter we focus in more detail
on the e¤ects of the parameter values of the Ethernet congestion control scheme
by designing and analysing a �uid queue model. Fluid queues are a frequently
used modeling framework in performance analysis of communication systems. These
models approximate packet streams by �ows of �uid. Feedback �uid queues are of
special signi�cance when modeling congestion control mechanisms, in particular
closed-loop controls in which the input process is a¤ected by the current value of
the bu¤er content. Practical examples are TCP congestion control, random early
detection [27], explicit congestion noti�cation [25] and Ethernet congestion control
mechanisms (see Chapter 5).

Previous work on feedback �uid queues [49] predominantly focused on queues
in which a single bu¤er threshold signals both the onset and end of congestion. In
these models, depending on whether the bu¤er occupancy is below or above the
threshold, the tra¢ c source is allowed to transmit at a high peak rate or slowed
down to a (lower) guaranteed tra¢ c rate, respectively. The special case at which
the threshold lies at 0 was also addressed in, e.g., [15, 64].

These �single-threshold systems�have serious drawbacks. In the �rst place, in
case the threshold is crossed often, many feedback signals have to be sent to the
tra¢ c source, and these may consume a signi�cant part of the available bandwidth.
In the second place, it can be argued that it is not optimal that a single threshold
performs the function of signaling the beginning and end of congestion: to maximize
throughput a full bu¤er is preferred (thus delaying the signal for the onset of conges-
tion as much as possible), whereas to minimize the bu¤er delay requires minimizing
the bu¤er occupancy (thus delaying the signal for the end of the congestion phase
as much as possible). Therefore, to �nd a good trade-o¤ between throughput and
bu¤er delay, there is a need for mechanisms with two separate thresholds: one to

79

80 6 A �uid queue model of Ethernet congestion control

signal the beginning of the congestion phase, and another to signal the end. In this
chapter we propose and analyze such a mechanism.

The model addressed in this chapter belongs to the class of (Markovian) �uid
models. The �classical��uid model [5, 41, 28] is characterized by a generator ma-
trix Q governing a Markovian background process and a diagonal matrix R =
diagfr1; :::; rdg: if the background process is in state i, tra¢ c is generated at a
rate ri � 0. It was shown that the steady-state bu¤er content distribution obeys
a system of linear di¤erential equations, and after imposing the proper additional
constraints these can be solved. From a methodological standpoint, an important
contribution was due to Rogers [69], who succeeded to express the steady-state
bu¤er content distribution in terms of the fundamental Wiener-Hopf factorization.
Another key paper is by Ahn and Ramaswami [4], who explicitly exploit relations
with quasi-birth-death processes. An alternative method for exact analysis of �uid
models using stochastic petri nets is provided in [30]. We also mention that a recent
literature overview on Markov �uid queues is given in, e.g., [16].

In the second half of the 1990s models emerged in which the source behavior was
in�uenced by the bu¤er content; see for instance [3, 15, 49, 64]; in [31, 72], Q and
R depend continuously on the bu¤er level. Importantly, in all these feedback �uid
models the bu¤er content uniquely de�nes the probabilistic properties of the source.
The model analyzed in the present chapter departs from this property. In fact the
input process has two �modes�. The �rst mode applies as long as the upper threshold
B1 has not been reached from below. As soon as that happens, we switch to the
second mode, until the lower threshold B2, smaller than B1, is hit from above, i.e.,
the bu¤er occupancy falls below B2: In this way the threshold B1 is used to signal
the onset of congestion, and B2 to signal the end of congestion. Important novelty
of our model as compared to earlier feedback models is that the input process may
behave in two di¤erent ways between the two thresholds, depending on the past.

In this chapter our goal is to �nd the steady-state bu¤er content distribution
and associated performance measures of the model with two thresholds, as was
described above. The methodology used involves the derivation of Kolmogorov
equations and balance equations, which result in a solution in terms of a spectral
expansion; then additional conditions are identi�ed that solve for the unknowns
in the solution. Although this method is in principle similar to the approach in,
e.g., [49], our model poses new challenges, due to its speci�c features (i.e., the two
thresholds, the two modes of the input process). In the analysis particularly the
behavior at the thresholds should be handled with care. As a result, the derivation
of the conditions to solve for the unknowns turns out to be substantially more
di¢ cult than in the model of [49].

We mentioned above that the model we investigate can be useful in detecting
congestion and can be generically applied to any congestion control mechanism
for packet networks such as [27], [25] and [48]. Here, we explain how this kind
of feedback control has special signi�cance with respect to congestion control in

6.1 Model 81

Ethernet metropolitan networks. The backpressure scheme de�ned in IEEE 802.3x
[76], is intended to provide �ow control on a hop-by-hop basis by allowing ports
to turn o¤ their upstream link neighbors for a period of time. For a full-duplex
connection, this mechanism is based on a special frame called pause frame in which
the pause period is speci�ed. The end-station (or router) receiving the pause frame
looks at the pause period, and does not transmit or attempt transmission for that
amount of time. Alternatively, an on/off pause message can be sent signaling the
beginning and end of the transmission pause phase. This congestion control method
is usually implemented by using a high and a low threshold in the (congested) queue.
When the queue occupancy exceeds the high threshold the PauseOn message is sent
and when the queue occupancy drops below the low threshold the PauseO¤ message
is sent and consequently transmission is resumed. Previous works [48], [47] and [56]
on Ethernet congestion control have concentrated on the throughput gain which
can be achieved by using the scheme. We are not aware of any literature with an
analytically tractable model of the mechanism. The model presented in this chapter
can be used to optimally con�gure the high and low thresholds and decide on when
to initiate the transmission pause phase and when to end it, consequently, addressing
an essential design criterion for the Ethernet congestion avoidance scheme.

The rest of the chapter is organized as follows. In Section 6.1 we describe the
model with two thresholds in detail. In Section 6.2 we analyze the model and derive
the equilibrium distribution of the bu¤er content. This section consists of three
parts. Section 6.2.1 gives the balance equations for the bu¤er occupancy. Section
6.2.2 uses the spectral expansion method to provide the solution to the bu¤er oc-
cupancy in a compact form, which involves several unknown coe¢ cients. In Section
6.2.3 we derive as many constraints as there are unknowns, so that these coe¢ -
cients can be identi�ed. In Section 6.3 we demonstrate our analysis by considering
a numerical example and graphically present the bu¤er content distribution; we re-
mark that a full numerical assessment of the backpressure mechanism, relying on
the methods developed in this chapter, is found in [44]. We do include here, how-
ever, numerical evidence for the claim that the two-threshold mechanism leads to a
reduction of the signaling overhead. Finally in Section 6.4 we conclude the chapter
with a summary of our results, and a discussion on future work.

6.1 Model

In this section we provide the formal de�nition of the model. We consider a �uid
queue with an in�nite bu¤er and constant output rate c. Let W (t) be the content
of the queue at time t, which is a stochastic process due to the probabilistic way in
which �uid enters the queue. A popular model for such an input process is a so-
calledMarkov �uid source. This model prescribes that the rate at which �uid enters
the queue per unit time depends on the current state of some background irreducible

82 6 A �uid queue model of Ethernet congestion control

B
uf

fe
r

C
on

te
nt

Time

B1

B2

Regime 1: (0, B2)

Regime 2: (B2 , B1)

Regime 3: (B1 ,∞) B1 hit from below

B2 hit from above

)(
)(

−=
+=

tI
tI

)(tW

t

B
uf

fe
r

C
on

te
nt

Time

B1

B2

Regime 1: (0, B2)

Regime 2: (B2 , B1)

Regime 3: (B1 ,∞) B1 hit from below

B2 hit from above

)(
)(

−=
+=

tI
tI

)(tW

t

Figure 6.1: Di¤erent regimes for the bu¤er content W (t):

continuous-time Markov chain X(t), de�ned on a �nite state-space f1; : : : ; dg, for
d 2 N. At times when X(t) = i, the current input rate is ri � 0. When we let the
corresponding generator matrix be Q � (qij)di;j=1, with

Pd
j=1 qij = 0 and qij � 0 for

i 6= j, and de�ne the d-dimensional tra¢ c rate vector r � (r1; : : : ; rd)T, we call this
input process a Markov-�uid source with parameters Q and r.

In our feedback �uid model, the input stream alternates between two modes. In
one mode the input process behaves like a Markov �uid source with generator Q+

(dimension d � d) and tra¢ c rate vector r+ (dimension d). Similarly, in the other
mode it behaves like a Markov �uid source with generator Q� (also dimension d�d)
and tra¢ c rate vector r� (also dimension d).

We introduce the indicator variable process I(�), taking values in f`+0; `�0g, which
gives the current mode of operation of the input source. It is important to note that
whenever I(t) switches from one mode to another, the background processX(t) stays
in the same state; only its dynamics will from that time onwards behave according to
the other generator matrix. However, the rate at which the �uid bu¤er receives �uid
does change instantaneously from r+i to r

�
i (or vice versa), when the background

process X(t) is in state i at the switching instant. Which of the two modes is
currently valid at some time t depends on the behavior of the content process W (t)
relative to two thresholds, an upper threshold B1 and a lower threshold B2. The
�rst mode (�+�) applies as long as W (t) has not reached the upper threshold B1
from below. As soon as that happens, I(t) switches to the other mode (���), until
W (t) hits the lower threshold B2 from above, etc.

Let us describe this in some more detail, see also Figure 6.1. Suppose W (0) = 0,

6.1 Model 83

i.e., the process starts with an empty bu¤er, and let the indicator process I(t) start
in �+�, where it will stay as long as the process W (t) has not reached B1 from
below. During this period the input process behaves as a Markov-�uid source with
d-dimensional generator Q+ and tra¢ c rate vector r+, and the bu¤er is drained
at a rate c. At some point the bu¤er content W (t) reaches the upper threshold
B1. Suppose that X(t) is then in state j. Then I(t) switches to ���, while the
background process X(t) stays in state j. From then on the input process behaves
as a Markov-�uid source with generator Q� and tra¢ c rate vector r�, while the
bu¤er is still drained at rate c. In particular, the current �ow rate will change
from r+j , which is larger than c, to r

�
j , which may or may not be larger than c.

Further on at some moment the bu¤er content W (t) drops to the lower threshold
B2. Suppose that X(t) is in state k at this moment, then I(t) switches to �+�while
the background process stays in state k, and the input rate changes from r�k < c to
r+k .

Thus, the process continues, and will converge to an equilibrium distribution,
assuming the queue is stable. With �� denoting the equilibrium distribution cor-
responding to Q�, i.e., ��Q� = 0 and

Pd
i=1 �

�
i = 1; the equilibrium condition

is
dX
i=1

��i r
�
i < c;

throughout this chapter we assume that this condition is satis�ed. For technical
reasons, we will also assume that for all states i = 1; : : : ; d we have r+i 6= c and
r�i 6= c, so that the content of the queue is never constant over time (unless it is
zero). Let W be the steady-state bu¤er content, i.e., a random variable distributed
as limt!1W (t) and de�ne I and X similarly. De�ne also, for i = 1; : : : ; d and x � 0;

F�i (x) := P(I = �; X = i;W � x); F+i (x) := P(I = +; X = i;W � x):

Our goal in this chapter is to identify F�i (x) and F
+
i (x): Having solved for these

distribution functions, we can calculate two important performance measures for the
system, namely the throughput # and the distribution of the delay D, as follows:

=
dX
i=1

�
r+i F

+
i (1) + r�i F

�
i (1)

�
, (6.1)

and for d � 0;

P(D � d) =

dX
i=1

�
r+i F

+
i (dc) + r�i F

�
i (dc)

�!,
dX
i=1

�
r+i F

+
i (1) + r�i F

�
i (1)

�!
:

We de�ne some additional notation which will be helpful in considering the
various cases while solving for F�i (x) and F

+
i (x): We de�ne the sets of �up-states�

84 6 A �uid queue model of Ethernet congestion control

and �down-states�for both modes, and their cardinalities, as follows:

S�D := fi : r�i < cg and d�D := #fS�Dg;
S�U := fi : r�i > cg and d�U := #fS�Ug;
S+D := fi : r+i < cg and d+D := #fS+Dg;
S+U := fi : r+i > cg and d+U := #fS+Ug:

The subscript D is a mnemonic for �Down�, referring to the bu¤er being drained,
while U stands for �Up�, referring to the bu¤er �lling up. Evidently, d�D + d�U =
d+D + d+U = d:

6.2 Analysis

In this section we analyze the bu¤er content distribution, by presenting a procedure
to compute F�i (x) and F

+
i (x), for i = 1; : : : ; d: From the model description in the

previous section we know that F�i (x) and F
+
i (x) have di¤erent characteristics in

di¤erent intervals of the bu¤er content. Therefore, we de�ne Regimes 1, 2, and 3,
as shown in Figure 6.1. For each of these regimes we analyze F�i (x) and F

+
i (x):

Two cases are rather straightforward, and therefore we start with these.

3+: F+i (x) in Regime 3. When the bu¤er occupancy reaches B1 the indicator
switches to the ���state (if it was not in ���already). The indicator changes
to �+�, only after the bu¤er occupancy would drop below B2; where B2 < B1:
Therefore, F+i (x) is constant in the interval [B1;1): For i = 1; :::; d and x �
B1;

F+i (x) = F+i (B1): (6.2)

1�: F�i (x) in Regime 1. If the bu¤er occupancy drops below B2; then the indicator
switches to �+�: Therefore, the �uid source with the ���indicator can never be
active below B2 but only in the interval [B2;1): We have, for all i = 1; :::; d
and x � B2;

F�i (x) = 0: (6.3)

Nevertheless, it is important to note that even though F�i (B2) = 0 the density
at B2; i.e.,

fi
�(B2) =

dF�i (x)

dx

����
x#B2

;

might not be equal to zero.

The other cases 1+, 2+, 2� and 3� are analyzed in the following subsections. We
follow an approach similar to that in [5, 49] to �nd the complete solution to F�i (x)
and F+i (x). We derive the balance equations for both F

�
i (x) and F

+
i (x) in Section

6.2 Analysis 85

6.2.1, by �rst considering the Kolmogorov forward equations. What makes the
Kolmogorov equations especially complicated in our case are the transitions around
the thresholds B1 and B2: Assuming that a transition takes place somewhere in a
small time interval, the exact time of the transition is unknown, and as a consequence
so is the indicator of the generator matrix in that interval. Section 6.2.1 deals with
these issues. In Section 6.2.2 the spectral expansion method is used to �nd the
solution to the di¤erential equations. These can be written down in a rather simple
form, but involve an extensive set of unknown coe¢ cients. In Section 6.2.3 we �nd
as many conditions as the number of unknowns, so that the stationary distribution
of the bu¤er content can be determined.

6.2.1 Derivation of the balance equations

We found above simple solutions for F+i (x) in Regime 3 and F�i (x) in Regime
1, given by Eqns. (6.2) and (6.3). Our goal in this subsection is to derive the
Kolmogorov forward equations for the other cases, from which we then easily obtain
the corresponding balance equations. We slightly abuse notation by also using F�i
and F+i for the time-dependent distribution functions, i.e., we de�ne F�i (t; x) :=
P(I(t) = �; X(t) = i;W (t) � x) and F+i (t; x) analogously.

1+: F+i (x) in Regime 1. Regime 1 refers to 0 < x < B2; where we have for small h

F+i (t+h; x) =

1� h

X
j 6=i

q+i;j

!
F+i
�
t; x� h(r+i � c)

�
+h
X
j 6=i

q+j;iF
+
j (t; x)+o(h):

Rearranging, dividing by h, and using the fact that the rows of the Q+ matrix
add up to zero, we obtain

F+i (t+ h; x)� F+i (t; x� h(r+i � c))

h
= q+i;iF

+
i (t; x� h(r+i � c))

+
X
j 6=i

q+j;iF
+
j (t; x) +

o(h)

h
:

By taking h # 0; we �nd

@

@t
F+i (t; x) + (r

+
i � c)

@

@x
F+i (t; x) =

X
j

q+j;iF
+
j (t; x):

(Remark that, formally, these partial derivatives are not necessarily well-
de�ned. As we are interested in the stationary behavior of the queue, this
fact does not play a role � in fact we can assume the queue content has a
proper density at time 0.) Assuming stationarity we set F+i (t; x) = F+i (x)

86 6 A �uid queue model of Ethernet congestion control

and in addition we set all derivatives with respect to t equal to 0. We thus
obtain

(r+i � c)
d

dx
F+i (x) =

X
j

q+j;iF
+
j (x): (6.4)

2+: F+i (x) in Regime 2. We now consider the interval B2 < x < B1: For i in
S�U , we simply have the same equations as in Regime 1, leading to Eqn. (6.4).
However, when i in S�D , we have to include the possibility that a transition can
occur from the ���state into the �+�state. This will happen when the bu¤er
content at time t is between B2 and B2 � h(r�i � c) (which is just above B2
due to i 2 S�D), and the background process does not change its state during
(t; t + h]. A complication here is that before the transition, Q� is active and
after the transition Q+ is active. However, we do know that the probability
that X(t) remains in i during during (t; t+ h] is 1 + o(1), no matter what the
precise form is, and this knowledge is su¢ cient. We thus �nd, for i in S�D ,

F+i (t+ h; x) =

1� h

X
j 6=i

q+i;j

!
F+i
�
t; x� h(r+i � c)

�
+h
X
j 6=i

q+j;iF
+
j (t; x)

+ (1 + o(1))
�
F�i (t; B2 � h(r�i � c))� F�i (t; B2)

�
+ o(h): (6.5)

By rearranging and dividing by h on both sides we obtain

F+i (t+ h; x)� F+i (t; x� h(r+i � c))

h
= q+i;iF

+
i (t; x� h(r+i � c))

+
X
j 6=i

q+j;iF
+
j (t; x) + (1 + o(1))

(F�i (t; B2 � h(r�i � c))� F�i (t; B2)

h
+
o(h)

h
:

Then taking h # 0; and assuming stationarity we �nd

(r+i � c)
d

dx
F+i (x) =

X
j

q+j;iF
+
j (x)� (r�i � c)

d

dx
F�i (x)

����
x#B2

: (6.6)

Since for i in S�U , we already found the same equations as in Regime 1, leading
to Eqn. (6.4), we can combine the two cases to �nd, for i = 1; : : : ; d,

(r+i � c)
d

dx
F+i (x) =

X
j

q+j;iF
+
j (x)� A�i ; (6.7)

where

A�i =

8<: (r�i � c)
d

dx
F�i (x)

����
x#B2

for i in S�D ;

0 for i in S�U :

(6.8)

6.2 Analysis 87

2�: F�i (x) in Regime 2. In Regime 2, i.e., B2 < x < B1; for i in S�U ; we have the
simple case

F�i (t+h; x) =

1� h

X
j 6=i

q�i;j

!
F�i (t; x�h(r�i � c))+h

X
j 6=i

q�j;iF
�
j (t; x)+ o(h):

By rearranging, dividing by h; taking h # 0 and assuming stationarity we
obtain

(r�i � c)
d

dx
F�i (x) =

X
j

q�j;iF
�
j (x): (6.9)

For i 2 S�D ; the equation is more complicated. If we consider a time interval of
h time units, then in this interval the bu¤er occupancy will drop by jh(r�i �c)j:
We have to make sure that it does not drop to or below B2: If this occurs then
the indicator switches to the �+�state, which is the probability we want to
subtract from the equations (as it was already taken into account in (6.6)).
Therefore, we include the term �F�i (t; B2 � h(r�i � c)) which ensures that
after h time units the bu¤er occupancy cannot drop to or below B2. We thus
obtain

F�i (t+ h; x) =

1� h

X
j 6=i

q�i;j

!
(F�i (t; x� h(r�i � c))

�F�i (t; B2 � h(r�i � c)))

+h
X
j 6=i

q�j;iF
�
j (t; x) + o(h):

By rearranging, taking h # 0 and assuming stationarity we get

(r�i � c)
d

dx
F�i (t; x) =

X
j

q�j;iF
�
j (t; x) + (r

�
i � c)

d

dx
F�i (t; x)

����
x#B2

: (6.10)

We can now combine Eqns. (6.9) and (6.10) into one equation for i as

(r�i � c)
d

dx
F�i (x) =

X
j

q�j;iF
�
j (x) + A�i (6.11)

where A�i is given by Eqn. (6.8).

3�: F�i (x) in Regime 3. The equations for B1 < x < 1; are the most compli-
cated. This is because we have to take into account two aspects. Firstly,
we have to exclude the possibility of a transition from the ��� into the �+�
state when X(t) is in S�D and the bu¤er content is just above B2 at time t.
It is clear from the explanation for F�i (x) in Regime 2 that this is done by
including a term �F�i (t; B2 � h(r�i � c)). Secondly, we have to include the

88 6 A �uid queue model of Ethernet congestion control

possibility of a transition from the �+�state into the ���state. If at time t,
the bu¤er content is somewhere in the interval [B1; B1 � h(r+i � c)]; and the
background state is in S+U ; then in another h time units, the bu¤er content will
increase and will de�nitely reach B1 and jump into the ���state. We there-
fore add a term (1 + o(1))

�
F+i (t; B1)� F+i (t; B1 � h(r+i � c))

�
, similar to the

term (1 + o(1))
�
F�i (t; B2 � h(r�i � c))� F�i (t; B2)

�
we added in the equation

for F+i in Regime 2. We �nd, for i in S�D \ S+U ,

F�i (t+ h; x) =

1� h

X
j 6=i

q�i;j

!
(F�i (t; x� h(r�i � c))

�F�i (t; B2 � h(r�i � c)))

+ (1 + o(1))
�
F+i (t; B1)� F+i (t; B1 � h(r+i � c))

�
(6.12)

+ h
X
j 6=i

q�j;iF
�
j (t; x) + o(h):

By rearranging, dividing by h; taking h # 0, and assuming stationarity, we
obtain

(r�i � c)
d

dx
F�i (x) =

X
j

q�j;iF
�
j (x) + (r

�
i � c)

d

dx
F�i (x)

����
x#B2

+(r+i � c)
d

dx
F+i (x)

����
x"B1

(6.13)

In order to derive the equations for the other values of i we should note that
in Eqn. (6.12) the term F�i (t; B2 � h(r�i � c)) appears for all i 2 S�D and the
term (1 + o(1))

�
F+i (t; B1)� F+i (t; B1 � h(r+i � c))

�
for i 2 S+U : Further on in

(6.13) the term F�i (t; B2 � h(r�i � c)) results in

(r�i � c)
d

dx
F�i (x)

����
x#B2

;

whereas (1 + o(1))
�
F+i (t; B1)� F+i (t; B1 � h(r+i � c))

�
leads to

(r+i � c)
d

dx
F+i (x)

����
x"B1

:

Therefore, we obtain, for any i = 1; : : : ; d,

(r�i � c)
d

dx
F�i (x) =

X
j

q�j;iF
�
j (x) + A�i + A+i ; (6.14)

where A�i is given by Eqn. (6.8) and A
+
i is

A+i :=

8<: (r+i � c)
d

dx
F+i (x)

����
x"B1

for : i 2 S+U ;

0 for : i 2 S+D :
(6.15)

6.2 Analysis 89

Table 6.1: Overview of balance equations for F+(x)
Regime Interval F+(x)

1 (0; B2)
d
dxF

+(x)(R+ � C) = F+(x)Q+
2 (B2; B1)

d
dxF

+(x)(R+ � C) = F+(x)Q+ �A�
3 (B1;1) F+(B1)

Table 6.2: Overview of balance equations for F�(x)
Regime Interval F�(x)

1 (0; B2) 0

2 (B2; B1)
d
dxF

�(x)(R� � C) = F�(x)Q� +A�
3 (B1;1) d

dxF
�(x)(R� � C) = F�(x)Q� +A� +A+

In order to get an overview of the balance equations in the di¤erent regimes we
have summarized the results so far in matrix form in Tables 6.1 and 6.2, where
F+(x) � (F+1 (x); :::; F+d (x)); the row vectors F�(x); A� and A+ are de�ned
similarly. R+ is the diagonal matrix diagfr+1 ; :::; r+d g and R� the diagonal
matrix diagfr�1 ; :::; r�d g: We also introduce C := cId; where Id is the identity
matrix of dimension d.

6.2.2 Solution to the balance equations

In the previous subsection we have derived the balance equations for both F�(x)
and F+(x). In this subsection we provide the solutions to these equations, using the
spectral expansion method used in [5] and [49]. The solution can then be presented
in a simple form, but it involves a number of unknown coe¢ cients.

1+ : The balance equation for F+(x) in Regime 1 is dF+(x)=dx � (R+ � C) =
F+(x)Q+: The spectral expansion of the solution to this equation is given by

F+(x) =
dX
j=1

a1+j v
+
j exp[z

+
j x]

where (z+j ;v
+
j) is an eigenvalue-eigenvector pair satisfying z+j v

+
j (R

+ � C) =

v+j Q
+, and the a1+j are coe¢ cients.

In the above solution we tacitly assumed that the matrix Q+(R+ � C)�1 has
full eigenspace, in that all eigenvalues are simple (i.e., have multiplicity 1).
Two remarks are in place here. (A) In the �rst place, we mention that it is
known that if theQ+ matrix has a speci�c structure, the eigenvalues are indeed
simple (and real); most notably, as shown in [80], if Q+ corresponds to a birth-
death Markov process this property indeed applies. (B) Secondly, eigenvalues

90 6 A �uid queue model of Ethernet congestion control

with multiplicity k larger than 1 do not lead to any conceptual problems.
Standard theory on linear di¤erential equations entails that then the density
of the stationary queue content has terms proportional to xj exp(�z+j x), with
j = 0; : : : ; k � 1. We decided to assume in our analysis that the eigenvalues
of Q+(R+ � C)�1 (and later also those of Q�(R� � C)�1) are simple as the
corresponding formulas for the �non-simple case�do not add much extra insight,
and are notationally cumbersome.

2+ : We now consider F+(x) in the interval B2 < x < B1 for which the balance
equation is

d

dx
F+(x)(R+ � C) = F+(x)Q+ �A�:

This equation has an inhomogeneous term because of which we cannot write
the solution as for F+(x) in Regime 1. Since A�i is a constant (see Eqn. (6.8)),
di¤erentiation of the above equation with respect to x gives us a homogeneous
equation in f+(x) � dF+(x)=dx as below

d

dx
f+(x)(R+ � C) = f+(x)Q+:

Now that we have a homogeneous equation its solution is given as

f+(x) =
dX
j=1

~a2+j v
+
j exp[z

+
j x]

where (z+j ;v
+
j) is the same eigenvalue-eigenvector pair as before and ~a

2+
j are

coe¢ cients. As Q+ is the generator, it has eigenvalue 0, and hence one of the
eigenvalues z+j is zero, say z

+
j� = 0. With this in mind, integration immediately

yields that

F+(x) =
dX

j=1;j 6=j�
a2+j v

+
j exp[z

+
j x] + a2+j� v

+
j�x+w

2+

where a2+j = ~a2+j =z+j for j 6= j�; a2+j� = ~a
2+
j� , and the components w

2+
i of w2+

are integration constants:

2� : For B2 < x < B1; the balance equation for F�(x) is dF�(x)=dx � (R��C) =
F�(x)Q� + A�: This is again a inhomogeneous equation and the spectral
method cannot be used directly. Therefore, we follow the same procedure as
for F+(x) in Regime 2. We di¤erentiate the equation on both sides to get a
homogeneous equation in f�(x); which we integrate to obtain

F�(x) =

dX
j=1;j 6=j�

a2�j v
�
j exp[z

�
j x] + a2�j� v

�
j?x+w

2�

6.2 Analysis 91

Table 6.3: Overview of solution for F+(x)
Regime Interval F+(x)

1 (0; B2)
dX
j=1

a1+j v
+
j exp[z

+
j x]

2 (B2; B1)

dX
j=1;j 6=j?

a2+j v
+
j exp[z

+
j x] + a

2+
j? v

+
j?x+w

2+

3 (B1;1) F+(B1)

where (z�j ;v
�
j) is an eigenvalue-eigenvector pair satisfying z

�
j v

�
j (R

� � C) =

v�j Q
�, and the a2�j are coe¢ cients. The components w2�i of w2�, are integra-

tion constants and the coe¢ cient a2�j? corresponds to the eigenvalue z
�
j? = 0 of

Q�:

3� : The balance equation for F�(x) in Regime 3 is dF�(x)=dx � (R� � C) =
F�(x)Q� +A� +A+: In this equation we have two inhomogeneous terms as
opposed to one in the previous cases. Nevertheless, we can still apply the same
method as for F+(x) in Regime 2 and F�(x) in Regime 2. This is because
both the inhomogeneous terms in the equation above consist of constant ele-
ments limx#B2 dF

�
i (x)=dx and limx"B1 dF

+
i (x)=dx or zero (see Eqns. (6.8) and

(6.15)) which disappear after di¤erentiating with respect to x. Therefore, after
di¤erentiation and then integration we get the solution for F�(x) in Regime
3 as

F�(x) =
dX

j=1;j 6=j?
a3�j v

�
j exp[z

�
j x] + a3�j? v

�
j?x+w

3�

where (z�j ;v
�
j) is again the eigenvalue-eigenvector pair that satis�es z

�
j v

�
j (R

��
C) = v�j Q

�, and the a3�j are coe¢ cients. The components w3�i of w3� are
integration constants and the coe¢ cient a3�j? corresponds to z

�
j? = 0:

We summarize the solutions found in the various intervals in Tables 6.3 and 6.4.

6.2.3 Derivation of conditions for �nding the unknowns in
the solution

In Section 6.2.2, we provided the solution to F�(x) and F+(x) using the spectral
expansion method. However, the solution includes many unknowns which need to
be found with additional conditions. Tables 6.3 and 6.4 presents an overview of
the solution where the vectors a1+;a2+;a2�;a3�;w2+;w2� and w3� are unknown.

92 6 A �uid queue model of Ethernet congestion control

Table 6.4: Overview of solution for F�(x)
Regime Interval F�(x)

1 (0; B2) 0

2 (B2; B1)
dX

j=1;j 6=j?
a2�j v

�
j exp[z

�
j x] + a

2�
j? v

�
j?x+w

2�

3 (B1;1)
dX

j=1;j 6=j?
a3�j v

�
j exp[z

�
j x] + a

3�
j? v

�
j?x+w

3�

Table 6.5: Overview of the unknowns in the di¤erent regimes
Regime Interval F+(x) F�(x)

1 (0; B2) a1+j j = 1; :::; d 0

2 (B2; B1) a2+j ; w
2+
j j = 1; :::; d a2�j ; w

2�
j j = 1; :::; d

3 (B1;1) F+j (B1), for j = 1; ::; d a3�j ; w
3�
j j = 1; :::; d

Total number of unknowns: 8d

Table 6.5 enumerates all unknowns giving a total of 8d: In this section our goal is
to �nd 8d conditions so as to solve the system.

A. Boundary conditions at x = 0 and x =1 are as in [5] and [41]:

� F+i (0) = 0; for i in S
+
U . This is because it cannot be that simultaneously

the bu¤er is empty and the background process is in an up-state. This
gives us d+U conditions.

� For x!1, F�i (x) should remain bounded, and therefore for all z�j with
a non-negative real part, the corresponding a3�j has to be zero. Notice
that this also entails that the equilibrium distribution of W�(t) is given
by w3�. This gives us d�D conditions.

B. Continuity conditions. F+i (x) and F
�
i (x) are both continuous at the thresholds

B1 and B2: This gives us the following 4d equations:

� limx"B2 F
+
i (x) = limx#B2 F

+
i (x).

� limx"B1 F
+
i (x) = F+i (B1).

� limx#B2F
�
i (x) = 0.

� limx#B1F
�
i (x) = limx#B1 F

�
i (x).

C. Substitution conditions.
As in [49] we need to substitute the solutions given in Section 6.2.2 into the

6.2 Analysis 93

inhomogeneous balance equations of Section 6.2.1. We have 3 inhomogeneous
systems. Potentially each of these can lead to d conditions. Therefore, in total
we would get 3d equations from the substitution.

Boundary conditions, continuity conditions and substitution conditions together
were su¢ cient to solve the model in [49], but as we have a more complicated model
in which the �uid source alternates between two modes, this is not the case here.
Therefore, we introduce and prove the following:

D. Additional conditions.
In the �rst place, suppose that the bu¤er is �lling up in the �+�state. At
some point it will reach B1 and then switch to the ���process. Since there is
no density beyond B1 (and the phase being �+�) it is highly unlikely that the
bu¤er level is just below B1 while the background process is in a down-state.
Similarly, when the bu¤er is �lling up (���phase) it is unlikely that the bu¤er
content is just above B2 while the background process is in an up-state.

The lemma below states these additional conditions more precisely, and is
proved by deriving the balance equations at x = B1 and x = B2. Note that
these were not addressed in Section 6.2.1.

Lemma 1 (i) For all i 2 S+D ,

d

dx
F+i (x)

����
x"B1

= 0:

(ii) For all i 2 S�U
d

dx
F�i (x)

����
x#B2

= 0:

Proof: (i) We �rst consider the case for i in S�D \ S+U : In this case we have

F+i (t+ h;B1) = (1� h
X
j 6=i

q+i;j)F
+
i (t; B1 � h(r+i � c)) + h

X
j 6=i

q+j;iF
+
j (t; B1)

+ (1 + o(1))
�
F�i (t; B2 � h(r�i � c))� F�i (t; B2)

�
+ o(h):

(6.16)

By rearranging, dividing by h; taking h # 0 and assuming stationarity we obtain
for i in S�D \ S+U ,

(r+i � c)
d

dx
F+i (x)

����
x"B1

=
X
j

q+j;i(F
+
j (B1))� (r�i � c)

d

dx
F�i (x)

����
x#B2

:

94 6 A �uid queue model of Ethernet congestion control

Comparison with (6.8) and (6.15) shows thatX
j

q+j;iF
+
j (B1) = A+i + A�i ; (6.17)

and it is in fact easy to see that this holds for any i. Let us compare this to Eqn.
(6.7) for F+j (x) in the interval (B2; B1); letting x " B1; which givesX

j

q+j;iF
+
j (B1) = (r+i � c)

d

dx
F+i (x)

����
x"B1

+ A�i : (6.18)

From this comparison we conclude that for i in S+D

(r+i � c)
d

dx
F+i (x)

����
x"B1

= A+i = 0: (6.19)

from which the �rst claim immediately follows.

(ii) The proof of this part is similar, comparing the two equations for F�i (x) at
B2, which are F�i (B2) = 0 and

(r�i � c)
d

dx
F�i (x)

����
x#B2

=
X
j

q+j;iF
�
j (B2) + A�i : �

The following lemma entails that the number of substitution conditions is really
only 2d (not 3d).

Lemma 2 The equations from the substitution condition for F�(x) in the interval
(B2; B1) are implied by the continuity condition for F�(x) at B2.

Proof: We start with the substitution for F�j (x) in the interval (B2; B1): The
balance equation in this case is, see (6.11),

(r�i � c)
d

dx
F�i (x) =

X
k

q�k;iF
�
k (x) + A�i :

On substituting the solution back into the equation and using the fact that z�j? = 0
and

P
k q

�
k;iv

�
j;k = z�j v

�
j;i(r

�
i � c); where v�j;i refers to the ith component of vector v�j ,

we �nd
(r�i � c)(a2�j? v

�
j?;i) =

X
j

q�k;iw
2�
k + A�i : (6.20)

By the de�nition of A�i and using the �rst part of Lemma 1 we can simply substitute

A�i = (r�i � c)
d

dx
F�i (x)

����
x#B2

= (r�i � c)

dX

j=1;j 6=j?
a2�j v�j;iz

�
j exp[z

�
j B2] + a2�j? v

�
j?;i

!

6.2 Analysis 95

for all i = 1; :::; d in the equation above to give usX
k

q�k;iw
2�
k + (r�i � c)

dX

j=1;j 6=j?
a2�j v�j;iz

�
j exp[z

�
j B2]

!
= 0; or,

X
k

q�k;iw
2�
k +

X
k

q�k;i

dX

j=1;j 6=j?
a2�j v�j;k exp[z

�
j B2]

!
= 0

as the substitution conditions should hold. However, since we may freely addP
k q

�
k;ia

2�
j? v

�
j?;kB2 to the left-hand side of the above (since it is zero), and then com-

bine the sums into one, the conditions turn out to be equivalent to
P

k q
�
k;iF

�
k (B2) =

0; Hence they are indeed implied by the continuity equations at B2, which say that
F�k (B2) = 0 for all k. �

Let us now explain the intuition behind Lemma 2. If we look at Tables 6.1 and
6.2, we could suspect that an overlap could arise for F�i (x) in Regime 2. This is
because this is the only inhomogeneous equation which involves a single indicator
state (being the ��� state). The continuity equations would also have the same
characteristics. As for the other inhomogeneous equations, these involve terms with
both the �+�and the ���states, whereas the continuity equations still involve terms
with a single indicator state. Hence, for these cases there is a clear di¤erence be-
tween the characteristics of the substitution and the continuity equations, and the
substitution equations do give additional information.

Let us now count the number of conditions we have at our disposal. The bound-
ary conditions give us d+U and d

�
D equations and the four continuity conditions give

us another 4d conditions. The substitution conditions could have potentially given
us another 3d conditions. Adding these to the d+D+d

�
U conditions from Lemma 1, we

would together have 9d conditions, d more than we need. With Lemma 2 we proved
that an overlap of d conditions exists between the continuity and the substitution
conditions, eventually adding up to exactly 8d conditions equal to the total number
of unknowns in the solution (see Table 6.5), which we need to solve the system.

However, it is important to note that all the 8d equations are linear in the
di¤erent unknowns enlisted in Table 6.5, with a rank of 8d� 1. This is easy to see
since the linear system can be solved upto a multiplicative constant. The redundancy
in the equations can be removed by replacing any one of the equations in the linear
system by the normalization equation

dX
i=1

�
F+i (1) + F�i (1)

�
= 1: (6.21)

Thus, we arrive at the following result.

Proposition 3 We have 8d conditions on the coe¢ cients, matching the number of
unknowns.

96 6 A �uid queue model of Ethernet congestion control

In the next section we illustrate, by means of a numerical example, how one can
identify the 8d unknowns.

6.3 Numerical example

In this section we provide numerical results aimed at demonstrating the computa-
tion of the stationary distribution of the bu¤er content and the other performance
measures. We consider a two state numerical example, i.e., with d = 2. We consider
the following generator matrices and rate vectors,

Q+ =

�
�1 1
2 �2

�
; Q� =

�
�0:8 0:8
5 �5

�
; r� =

�
16
0

�
; r+ =

�
25
0

�
:

The other parameters are c = 15; B1 = 15 and B2 = 10: The diagonal matrices R�;
R+, and C then equal diagf16; 0g; diagf25; 0g, and diagf15; 15g, respectively. After
the numerical determination of the eigensystems of the matrices Q+(R+�C)�1 and
Q�(R��C)�1 we apply the conditions as listed in Section 6.2.3. We then solve the
resulting linear system of equations for the 8d = 16 unknowns. This gives us the
complete and unique solution for the stationary distribution of the bu¤er content,
F+(x) and F�(x): The graphical representation of F+i (x) and F

�
i (x) for i = 1; 2 is

shown in Figure 6.2.

The total throughput of the system can be calculated from Eqn. (6.1) as

= r+1 F
+
1 (1) + r�1 F

�
1 (1) = 14:1924:

We can compute the expected bu¤er content by �rst computing F (x) =
P

i;j F
j
i (x),

then computing the combined probability density as f(x) = dF (x)=dx: The expected
bu¤er content is then given by

ED =

1Z
0

xf(x)dx = 12:2040:

In a second experiment we consider the e¤ect of having two thresholds on the
signaling overhead. The expected number of phase-transitions per unit time equalsX

i2S+U

f+i (B1)(r
+
i � c) +

X
i2S�D

f�i (B2)(c� r�i);

this (plausible) formula is derived in [44]. The e¤ect of varying B2, for a given value
of B1, is shown in Figure 6.3. The other parameters are as above. We observe that
indeed the signaling frequency is reduced by choosing B2 much smaller than B1:

6.3 Numerical example 97

0 10 20 30 40
0

0.05

0.1

0.15

0.2
F+

1(x)

0 10 20 30 40
0.05

0.1

0.15

0.2

F+
2(x)

0 10 20 30 40
-0.2

0

0.2

0.4

0.6
F-

1(x)

0 10 20 30 40
0

0.02

0.04

0.06

0.08
F-

2(x)

Figure 6.2: Probability distribution functions of the bu¤er content with d = 2;
B1 = 15; B2 = 10:

0 2 4 6 8 10 12 14
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

S
ig

na
lin

g
Fr

eq
ue

nc
y

B2

Figure 6.3: Signaling frequency as B2 grows to B1 = 15:

98 6 A �uid queue model of Ethernet congestion control

6.4 Concluding remarks

We have analyzed a feedback �uid queueing system in which the tra¢ c source rates
adapt to congestion. The system has two thresholds: the higher threshold B1 aims
at signaling the beginning of a congestion period, whereas the lower threshold B2
serves to signal the end of the congestion period. This idea is modeled by letting the
input process alternate between two Markov �uid processes: the �rst applies as long
as the upper threshold B1 has not been hit from below. As soon as that happens,
the tra¢ c source switches to the other process, until B2 is hit from above.

The resulting model falls in the class of Markovian feedback �uid queues. The
numerical complexity of the methodology used to solve for the bu¤er content distrib-
ution and throughput boils down to solving two d-dimensional eigensystems, as well
as a (fairly standard) linear system of 8d equations; here d denotes the cardinality
of the state space on which the two Markov processes are de�ned.

A central design problem which can be investigated using our model, and is
addressed in [44], is the optimization of the threshold positions while considering
the trade-o¤ between throughput and delay. Challenging extensions to the present
analysis are the systematic assessment of the signaling frequency in the model (that
is, what is the rate at which the input process alternates between the two Markov
�uid processes), as a function of the model parameters; this is a relevant issue, as
the signaling overhead needs to be controlled. Yet another important direction for
future research is to incorporate delay in the reception of feedback signals and in
the adaptation of the source tra¢ c rate.

Chapter 7

Design issues of Ethernet
congestion control

In the previous chapter we presented a �uid queue model for Ethernet backpressure
based congestion control and provided its solution. We mentioned that the model
presented (and solved) there could be relied on when con�guring the high and low
thresholds, thus addressing a pivotal design criterion for the Ethernet congestion
avoidance scheme. We also remarked in Chapter 6 that the backpressure scheme
has the attractive property that the signaling overhead (in terms of the number of
pause messages sent per unit time) is lower than when using just one threshold (that
detects both start and end of congestion periods), but we did not systematically
quantify this e¤ect. Also, the reduction of signaling overhead may be at the expense
of a loss in throughput, or degraded performance in terms of delay.

The primary goal of the current chapter is to demonstrate the e¤ect of the
thresholds, and to obtain insight into the trade-o¤s mentioned above. In order to do
so, we also derive analytic formulas for the performance metrics of interest in terms
of the model parameters, as well as the parameters agreed upon in the service level
agreement. Numerical experiments are performed to evaluate the main trade-o¤s
of this model (for instance the trade-o¤ between the signaling frequency and the
throughput). These can be used to generate design guidelines. We also provide
an elementary, yet powerful, Markovian model that can be used as an approximate
model in situations of large tra¢ c aggregates feeding into the system; the trade-o¤s
and guidelines identi�ed for the feedback �uid model turn out to carry over to this
more stylized model.

The organization of this chapter is as follows. Section 7.1 describes our �uid
model, specializing to the situation of just one source feeding into the queue. It also
recapitulates the main results from Chapter 6. Then Section 7.2 presents derivations
of the main performance metrics considered in this chapter: the throughput, the
mean packet delay, signaling frequency, and the mean transmission time of a burst
of packets. Here we note that packet delays are of crucial interest for streaming

99

100 7 Design issues of Ethernet congestion control

applications; these generate tra¢ c with an �intrinsic duration and rate (which is
generally variable) whose time integrity must be preserved by the network�[67] �
think of telephony, streaming video and audio. On the other hand, the transmission
time, to be thought of as the time it takes for bursts of packets (�jobs�) to go through
a node, is a main performance metric for elastic applications, such as E-mail, �le
transfer, but also pictures or video sequences transferred for local storage before
viewing. Section 7.3 presents the numerical experiments that demonstrate how to
evaluate the trade-o¤s mentioned above, and presents a number of general guidelines.
We also include in Section 7.5 a model and corresponding numerical experiments
that indicate that the main �ndings carry over to the situation in which there are a
substantial number of concurrent users. Section 7.6 concludes this chapter.

7.1 Model and preliminaries

In this section we describe the model of which we analyze a number of key perfor-
mance metrics in Section 7.2, and which we numerically assess in Section 7.3. To
this end, we �rst de�ne generator matrices Q+ and Q� on the state space f1; 2g:

Q+ =

�
�p1 p1
p2 �p2

�
; Q� =

�
�m1 m1

m2 �m2

�
:

Also, we introduce tra¢ c rate vectors r+ = (rp; 0)T and r� = (rm; 0)T, with rp > c
and rm > c; these should be thought of as rates at which tra¢ c is generated, in
that tra¢ c �ows into the system at rate r`i if a background process X

`(�), governed
by generator matrix Q`, is in state i (with ` 2 f+;�g, and i 2 f1; 2g). In other
words, we identify the on-state with state 1 (�burst�), and the o¤-state with state 2
(�silence�). The capacity of the bu¤er is assumed to be in�nite (a similar analysis
can be done for the �nite-bu¤er case, though).

In this chapter we consider the model of Chapter 6, featuring the special case
that the dimension of the underlying sources is 2. In this feedback �uid model,
the input stream alternates between two �modes�(also referred to as �phases�). In
one mode the input process behaves like a Markov �uid source with generator Q+

and tra¢ c rate vector r+: when the background process is in state i 2 f1; 2g at
time t, tra¢ c is generated at a constant rate r+i , whereas the queue is drained at a
constant rate c. Similarly, in the other mode it behaves like a Markov �uid source
with generator Q� and tra¢ c rate vector r�.

The queueing process alternates between the two above-mentioned modes as fol-
lows. We �rst introduce the indicator variable process I(�), taking values in f+;�g,
which gives the current mode of operation of the input source. It is important
to note that whenever I(t) switches from one mode to another, the background
process X(t) stays in the same state; only its dynamics will from that time onwards

7.1 Model and preliminaries 101

behave according to the other generator matrix. However, the rate at which the
�uid bu¤er receives �uid does change instantaneously from r+i to r

�
i (or vice versa),

when the background process X(t) is in state i at the switching instant. Which
of the two modes is currently valid at some time t depends on the behavior of the
content process W (t) relative to two thresholds, an upper threshold B1 and a lower
threshold B2. The �rst mode (�+�) applies as long as W (t) has not reached the
upper threshold B1 from below. As soon as that happens, I(t) switches to the other
mode (���), until W (t) hits the lower threshold B2 from above, etc. The queueing
dynamics are illustrated by Fig. 6.1.

It is not hard to verify that the equilibrium condition of this model is

m2

m1 +m2

� rm < c;

i.e., in the ���-phase there should be a negative drift. We let

F `
i (x) := P(I = `;X = i;W � x);

with x � 0, i 2 f1; 2g, and ` 2 f+;�g, be the steady-state distribution of the
workload W , jointly with the state of the background process X 2 f1; 2g, and the
phase I 2 f+;�g. In Chapter 6 we presented an algorithm to compute F `

i (�), as
follows. Let z` (` 2 f+;�g) be the non-zero eigenvalue of the matrix Q`(R`� cI)�1.
It is easily veri�ed that

z+ =
p2
c
� p1
rp � c

; and z� =
m2

c
� m1

rm � c
:

Notice that z� < 0 because of the stability condition. Then the analysis in Chapter
6 entails that 3 regimes should be distinguished, cf. Fig. 6.1. More precisely, there
are constants `j;i, �

`
j;i, "

`
j;i (with regime j 2 f1; 2; 3g, state i 2 f1; 2g, and mode

` 2 f�;+g), such that

F�i (x) = 0; x � B2;

F�i (x) = �2;i + ��2;ie
z�x + "�2;ix; B2 < x � B1;

F�i (x) = �3;i + ��3;ie
z�x; x > B1;

also

F+i (x) = +1;i + �+1;ie
z+x; x � B2;

F+i (x) = +2;i + �+2;ie
z+x + "+2;ix; B2 < x � B1;

F+i (x) = F+i (B1); x > B1:

In Chapter 6 a procedure is detailed that enables us to compute these 10 constants,
by introducing 10 linear constraints to be imposed on the parameters.

102 7 Design issues of Ethernet congestion control

7.2 Performance metrics

In this section we derive (or recall) formulas for a number of performance metrics.

Throughput. We have the evident formula, already given in Chapter 6,

= rp � F+1 (1) + rm � F�1 (1):

Alternatively, it is clear that the throughput can be written as (realize that F+1 (0) =
0)

= c � P(W > 0) = c
�
1� F+2 (0)

�
: (7.1)

Packet delays. The delay D is de�ned as the delay experienced by an arbitrary
packet (in our model an in�nitesimally small ��uid particle�), and is hence a �tra¢ c-
average�. This performance metric is particularly relevant for streaming tra¢ c, as
argued in the introduction, due to its inherent time-integrity requirements. The
distribution of D was given in Chapter 6:

P(D � t) =
rpF

+
1 (tc) + rmF

�
1 (tc)

rpF
+
1 (1) + rmF

�
1 (1)

;

note that the denominator can be interpreted as the average amount of �uid that ar-
rives per unit of time, whereas the numerator is the fraction thereof that corresponds
to a delay smaller than t. The mean delay can be computed as

ED =

Z 1

0

P(D > t)dt =

Z 1

0

�
1� rpF

+
1 (tc) + rmF

�
1 (tc)

rpF
+
1 (1) + rmF

�
1 (1)

�
dt:

Signaling frequency. The signaling frequency is de�ned as the expected number
of phase transitions per unit time, and is a measure for the signaling overhead. With
f `i (x) := dF

`
i (x)=dx, we �rst observe that the expected number of upcrossings per

unit time through level x is, reasoning as in, e.g., [10, 72],

f+1 (x) � (rp � c) + f�1 (x) � (rm � c); (7.2)

here the �rst (second) term re�ects the number of upcrossings while in the �+�-phase
(���-phase). Likewise the expected number of downcrossings per unit time is given
by

f+2 (x+) � c+ f�2 (x+) � c: (7.3)

As an aside we mention that, as argued in [10, 72], expressions (7.2) and (7.3) should
match, since for any level the mean number of upcrossings per unit time equals the
mean number of downcrossings per unit time.

7.2 Performance metrics 103

Relying on the above reasoning it is now directly seen that the expected number
of phase-transitions per unit time equals

' := f+1 (B1) � (rp � c) + f�2 (B2) � c = 2f+1 (B1) � (rp � c) = 2f�2 (B2) � c;

here the f+1 (B1) � (rp � c) term corresponds to the number of upcrossings per unit
of time through B1 while in (to be understood as �coming from�) the �+�-phase, and
the f�2 (B2) � c term to the number of downcrossings per unit of time through B2
while in (i.e., coming from) the ���-phase. It is further noted the last two equalities
are due to the fact that the number of upcrossings per unit time through B1 while
in the �+�-mode should match the number of downcrossings per unit time through
B2 while in the ���-mode.

Transmission and sojourn time. The next performance metric, T , is the trans-
mission time of a burst, i.e., the time it takes to put the entire burst into the bu¤er.
Let fT (�) be the density of T . Consider the event fT = xg. We list three useful
properties:

� A �rst observation is that if x > B1=(rp�c), the system must have been in the
���-phase during at least part of the transmission time (as the bu¤er content
grows at rate rp � c while in the �+�-phase).

� A second observation is the following. Suppose the elastic job enters the system
when there is y in the bu¤er. If x is larger than (B1�y)=(rp�c) and the phase
is �+�, then the phase shifts from �+�to ���during the transmission time.

� A third observation is that if the phase is ���upon arrival, the phase remains
���during the entire transmission time.

It leads to the following expression, with f `(�) the density of the bu¤er content
seen by an arriving job, intersected with being in the `-phase, ` 2 f+;�g:

fT (x) =

Z maxfB1�(rp�c)x;0g

0

p1e
�p1xf+(y)dy

+

Z B1

maxfB1�(rp�c)x;0g
exp

�
�p1 �

B1 � y

rp � c

�
�m1 exp

�
�m1

�
x� B1 � y

rp � c

��
f+(y)dy

+

Z 1

B2

m1e
�m1xf�(y)dy; (7.4)

the �rst term corresponds to the situation in which the queue was in the �+�-phase at
the arrival epoch of the burst, and remains in the �+�-phase during the transmission
time, whereas in the second term the queue makes a transition to the ���-phase
during the transmission time; in the third term the queue was in the ���-phase at
the arrival epoch of the burst, and remains (automatically) in the ���-phase during

104 7 Design issues of Ethernet congestion control

the transmission time. From the density, the mean transmission time ET can be
computed.

It now remains to identify f+(y) and f�(y). As a burst enters while the source
is in the o¤-state, i.e., X = 2, and taking into account the di¤erent rates at which
the source can transmit when switching on,

f+(y) =
f+2 (y)p2R1

0
(f+2 (x)p2 + f�2 (x)m2)dx

; f�(y) =
f�2 (y)m2R1

0
(f+2 (x)p2 + f�2 (x)m2)dx

:

The numerator of f+(y) is to be interpreted as the rate at which the source turns
on while the phase is �+�and the bu¤er is y, whereas the denominator is the rate
at which the source turns on, irrespective of the phase and bu¤er content; the
expression for f�(y) can be interpreted likewise.

We now see how the formulas change when we do not consider the time it takes
before the burst is stored in the bu¤er, but instead the time before the entire burst
has left the queue, which we will refer to as the sojourn time S. This random variable
is most easily expressed in terms of its Laplace transform. We have to distinguish
between the same three cases as in (7.4). Regarding the �rst term, observe that if
the initial bu¤er level is y and the on-time is x, the entire burst has left the queue
after

x+
y + (rp � c)x

c
=
y

c
+
rpx

c
units of time. Regarding the second term, the amount of tra¢ c in the bu¤er at the
end of the transmission time is

B1 + (rm � c)

�
x� B1 � y

rp � c

�
;

and hence the sojourn time is

x+
1

c

�
B1 + (rm � c)

�
x� B1 � y

rp � c

��
=
rmx

c
+
rp � rm
rp � c

B1
c
+
rm � c

rp � c

y

c
:

Regarding the third term, then the sojourn time is

x+
y + (rm � c)x

c
=
y

c
+
rmx

c
:

We thus obtain

E��S =
Z 1

0

Z maxfB1�(rp�c)x;0g

0

p1e
�p1xf+(y) exp

�
��
�y
c
+
rpx

c

��
dydx

+

Z 1

0

Z B1

maxfB1�(rp�c)x;0g
exp

�
�p1 �

B1 � y

rp � c

�
�m1 exp

�
�m1

�
x� B1 � y

rp � c

��
f+(y)

exp

�
��
�
rmx

c
+
rp � rm
rp � c

B1
c
+
rm � c

rp � c

y

c

��
dydx

+

Z 1

0

Z 1

B2

m1e
�m1xf�(y) exp

�
��
�y
c
+
rmx

c

��
dydx:

7.3 Numerical experiments 105

By di¤erentiating, inserting � := 0, and multiplying with �1, we obtain ES. The
formulas do not provide much additional insight, and we have decided to omit them
here.

The transmission time and sojourn time are speci�cally meaningful in the case of
elastic tra¢ c. Then we let the size of the elastic job (in, say, bits) be exponentially
distributed with mean ��1, and choose p1 = �rp and m1 = �rm: In this situation,
the amount of tra¢ c to be sent has a �xed distribution (viz. exponentially with
mean ��1). The mean sojourn time reads

ES =
1

c

Z 1

0

y(f+(y) + f�(y))dy +
1

�c
;

where the �rst term represents the mean amount of time needed to serve all tra¢ c
the tagged job sees in the queue upon arrival, and the second term the time needed
to serve the tagged job itself.

Multi-dimensional sources. The above results can be extended to sources with
dimension higher than 2 (and hence also to the situation of multiple sources), as
the model of Chapter 6 presents the steady-state distribution for any dimension
of the underlying Markov �uid source; in fact, the formulas for the throughput
and the (packet-)delay distribution were already given in Chapter 6. The formula
for the signaling frequency follows along the same lines as sketched above, by an
upcrossings/downcrossings argument, where all states should be taken into account
in which B1 can be reached from below while being in the �+�-phase, as well as all
states in which B2 can be reached from above while being in the ���-phase.

7.3 Numerical experiments

In this section we describe a number of experiments, that assess the impact of
the model parameters on the performance. Four key metrics are considered, viz. (i)
throughput, (ii) signaling frequency, (iii) expected (packet) delay (streaming tra¢ c),
(iv) expected transmission time (elastic tra¢ c). We then indicate how our model
can be used in the design of the backpressure system, or, more speci�cally, when
selecting suitable values for the thresholds. The last part of the section addresses
an alternative model that can be used in case of larger aggregates feeding into the
queue.

7.3.1 Experiments

Experiment I: E¤ect of the thresholds � streaming tra¢ c. In this �rst experiment
we study the e¤ect of the thresholds on the performance in case of streaming tra¢ c.
In Chapter 5 we found (for a considerably more stylized model) that, for a given

106 7 Design issues of Ethernet congestion control

value of the upper threshold B1, the throughput was maximized by choosing the
lower threshold B2 as closely as possible to B1: What we did not address in [48] is
to what extent this a¤ects the signaling frequency, packet delays, and transmission
times.

In this example we chose the following parameters, with c = 10:

Q+ = Q� =

�
�1 1
1 �1

�
; r+ =

�
25
0

�
; r� =

�
15
0

�
:

Remark that this situation is typical for a streaming user: when there is low (high,
respectively) congestion, it is allowed to transmit at a high (low) rate, but the
generator matrices, i.e., Q+ and Q�, are not a¤ected by the level of congestion. In
other words: a sample-path of the process consists of a sequence of on- and o¤-times.
The results are presented in Fig. 7.1. It is noted that the mean bu¤er content and
the mean packet delay can be easily translated in one another, noticing that (due
to Little�s formula) the mean bu¤er content equals the product of the throughput
and the mean packet delay. This motivates why we have chosen to show just the
throughput and the mean packet delay, and to leave out the mean bu¤er content;
the reader can compute the mean bu¤er content easily. We mention that in all our
experiments the mean bu¤er content showed the same qualitative behavior as the
mean packet delay.

Consider the situation of a �xed value of B1, and compare the situations of (A)
B2 < B1 and (B) B2 = B1. From the graphs we will see that, compared to situation
(B), under (A) the throughput, signaling frequency, and mean packet delay are
lower. In other words: there is a trade-o¤ between throughput on one hand, and
signaling frequency and mean packet delay on the other hand.

These trends can be explained as follows. First observe that epochs at which
the bu¤er content is B1 and the phase jumps from �+� to ��� are regeneration
epochs, in that the process probabilistically starts all over. Let time 0 be such a
regeneration epoch, and let WA(t) be the workload process in situation (A), and
WB(t) the workload in situation (B). Then it is seen that WA(t) � WB(t) sample-
path-wise, and hence P(WA = 0) � P(WB = 0), and hence, according to (7.1), the
throughput is indeed lower under (A) than under (B). Likewise, it can be argued
that regeneration cycles last shorter under (B), and as there are two signals per
regeneration period, the signaling frequency under (A) is lower than under (B).
With a similar argumentation, it also follows that the mean packet delay is lower
under (A) than under (B).

Experiment II: E¤ect of the transmission rate �streaming tra¢ c. In this exper-
iment we study the e¤ect of the peak rate rp on the performance. In the service
level agreement, typically the rp will be speci�ed. The e¤ect of having a higher
rp is the following. Observe that regeneration periods become shorter when rp in-
creases, and hence the signaling rate increases. Also (on a sample-path basis) the
workload process increases in rp, leading to a higher throughput and mean packet

7.3 Numerical experiments 107

•B •B •B
•B•1•=5 •B•1•=10 •B•1•=15 •B•1•=20 •B•1•=25

•0 •10 •20 •30
•8

•8.5

•9

•9.5
•Throughput

•B•2

•0 •10 •20 •30
•0.1

•0.2

•0.3

•0.4

•0.5
•Signaling Frequency

•B•2

•0 •10 •20 •30

•0.2

•0.25

•0.3

•0.35
•Expected Delay

•B•2

•B •B •B
•B•1•=5 •B•1•=10 •B•1•=15 •B•1•=20 •B•1•=25

•0 •10 •20 •30
•8

•8.5

•9

•9.5
•Throughput

•B•2

•0 •10 •20 •30
•0.1

•0.2

•0.3

•0.4

•0.5
•Signaling Frequency

•B•2

•0 •10 •20 •30

•0.2

•0.25

•0.3

•0.35
•Expected Delay

•B•2

Figure 7.1: E¤ect of thresholds on streaming tra¢ c.

20 30 40 50
8.5

9

9.5

10
Throughput

rp

20 30 40 50
0.1

0.12

0.14

0.16

0.18
Signaling Frequency

rp

20 30 40 50
0.22

0.24

0.26

0.28
Expected Delay

rp

Figure 7.2: E¤ect of transmission rate rp on streaming tra¢ c

0.5 1 1.5
8

8.5

9

9.5

10
Throughput

α
0.5 1 1.5
0

0.05

0.1

0.15

0.2
Signaling Frequency

α
0.5 1 1.5
0

0.5

1

1.5
Expected Delay

α

Figure 7.3: E¤ect of multiplying rp and rm by factor � (� is such that the stability
condition is satis�ed).

108 7 Design issues of Ethernet congestion control

delay. Hence, we see a similar e¤ect as in Experiment I. Doubling the peak rate
rp, though, does clearly not lead to doubling the throughput. Remark that it may,
at �rst glance, be slightly counterintuitive that the performance in term of packet
delay degrades when increasing rp, but this e¤ect is due to the fact that the bu¤er
content increases. In the numerical experiment, we use the parameters of Experi-
ment I (except that we vary the value of rp). We chose B1 = 25 and B2 = 10; the
graphs are shown in Fig. 7.2.

We also include a related experiment here, where both rp and rm are multiplied
by � (but � is such that the stability condition remains ful�lled). Now the �+�-phase
lasts shorter, while the ���-phase lasts longer. Hence it can be argued that both
the delay and throughput increase when rp and rm grow, but it is not a priori clear
what happens with the signaling frequency. The results are presented in Fig. 7.3; it
is seen that the signaling frequency shows non-monotone behavior in �.

Notice that the above insights are of interest for the user. The rp is the fastest
rate he can transmit at, whereas the rm can be regarded as some minimally guar-
anteed transmission rate. These are rates that are agreed upon in the service level
agreement. Clearly, the higher the transmission rates, the more the customer will
be charged. The �gures may guide the user in choosing his rp and rm, taking into
account this trade-o¤.

Experiment III: E¤ect of the thresholds �elastic tra¢ c. In this third experiment
we study the e¤ect of the thresholds on the performance for the case of elastic tra¢ c.
We wonder if, in order to maximize the throughput, just as in the case of streaming
tra¢ c, it is again optimal to choose B2 = B1; we are also interested in the impact
of the choice of the thresholds on the other performance metrics.

In this example we chose the following parameters, with c = 10:

Q+ =

�
�1 1
1 �1

�
; Q� =

�
�3
5

3
5

1 �1

�
; r+ =

�
25
0

�
; r� =

�
15
0

�
:

Remark that this situation is typical for an elastic user: when there is low (high,
respectively) congestion, it is allowed to transmit at a high (low) rate, but the
generator matrices, i.e., Q+ and Q�, are now adapted too in order to re�ect the
fact that the burst lasts longer when the transmission rate is reduced. A sample-
path of the process is now a sequence of job sizes (i.e., measured in volume, in, say,
bits � hence not time) and o¤-times (measured in time, to be interpreted as �read-
times�). In this example the job sizes have an exponential distribution with mean
1=� = rm=m1 = rp=p1 = 25; and the read-times have an exponential distribution
with mean 1. The numerical outcome is presented in Fig. 7.4.

Consider again the situation of a �xed value of B1, and compare the situations
of (A) B2 < B1 and (B) B2 = B1. Under (A) regeneration cycles are longer than
under (B), and hence the signaling frequency is lower. We have not found, however,
a sound argumentation that reveals in which situation the throughput and packet

7.3 Numerical experiments 109

•B•1•=5 •B•1•=10 •B•1•=15 •B•1•=20 •B•1•=25

•0 •10 •20 •30
•9.4

•9.6

•9.8

•10
•Throughput

•B•2

•0 •10 •20 •30
•0

•0.05

•0.1

•0.15

•0.2
•Signaling Frequency

•B•2

•0 •10 •20 •30
•6

•6.5

•7

•7.5

•8
•Expected Sojourn Time

•B•2

•B•1•=5 •B•1•=10 •B•1•=15 •B•1•=20 •B•1•=25•B•1•=5 •B•1•=10 •B•1•=15 •B•1•=20 •B•1•=25

•0 •10 •20 •30
•9.4

•9.6

•9.8

•10
•Throughput

•B•2

•0 •10 •20 •30
•0

•0.05

•0.1

•0.15

•0.2
•Signaling Frequency

•B•2

•0 •10 •20 •30
•6

•6.5

•7

•7.5

•8
•Expected Sojourn Time

•B•2

Figure 7.4: E¤ect of thresholds on elastic tra¢ c.

0 20 40 60
9.5

9.6

9.7

9.8

9.9
Throughput

rp

0 20 40 60

0.04

0.045

0.05
Signaling Frequency

rp
0 20 40 60

7

7.2

7.4

7.6

7.8
Expected Sojourn Time

rp

Figure 7.5: E¤ect of varying transmission rate rp and p1 while their ratio rp= p1 = 25

delay are higher. Intuitively one would think that under (B) throughput is higher,
which is con�rmed by the graphs. The expected sojourn time ES turns out to have
non-monotone behavior in this parameter setting; varying B2 has clearly impact on
the bu¤er content seen by an arriving job, but in a rather unpredictable way.

We mention that in this experiment the parameters are chosen such that the
�mean drift�while being in the �+�-phase is positive, which implies that the upper
threshold B1 will be reached in a relatively short time (roughly equal to B1 � B2
divided by this mean drift). The case of a negative �mean drift�while being in the
�+�-phase is less interesting, as it can then be argued that the process will be in the
�+�-phase most of the time, and the queue roughly behaves as a non-feedback queue
with generator Q+ and tra¢ c rates r+. In other words: in this case the value of B1
has hardly any impact on the throughput.

Experiment IV: E¤ect of the transmission rate � elastic tra¢ c. When rp in-

110 7 Design issues of Ethernet congestion control

2 4 6 8 10
8.9

9

9.1

9.2

9.3

9.4
Th

ro
ug

hp
ut

 (θ
)

Time between signals (ψ)

(a)

0 5 10 15 20 25
17

18

19

20

21

22

23

B2

f(θ
 , ψ

)

(b)

1.75θ +0.35ψ
2θ +0.005ψ
1.5θ +ψ

Figure 7.6: Trade-o¤ between throughput # and time between signals (streaming
tra¢ c).

creases (with � held constant, i.e., p1 increases as well), regeneration cycles become
shorter, and hence the signaling frequency increases. As could be intuitively ex-
pected also the throughput and expected sojourn time increase, but again we lack
a solid argumentation; see Fig. 7.5.

7.4 Design issues

Above we saw that there is a trade o¤ between the signaling frequency and the
throughput, and it is the network provider�s task to balance these, according to
his (subjective) preference. We here sketch how such a decision is facilitated by our
model. Figs. 7.6 and 7.7 depict the trade-o¤between the throughput # and the time
between two subsequent signals := 1=', for a given B1 by varying B2 2 [0; B1]; it
provides us with a (decreasing) function # = g() (see the left panels in Figs. 7.6
and 7.7). The provider having objective function f(#;), increasing in both # and
 , is faced with the following optimization problem:

max
#;

f(#;) under # = g():

Having identi�ed the optimally achievable pair (#?; ?), we can now reconstruct
what the corresponding value B?

2 was. Clearly, a similar procedure can be set up
with both B1 and B2 being decision variables.

In Figs. 7.6-7.7 we graphically illustrate how to identify the optimum for the
objective function f(#;) = �1#+ �2 . Fig. 7.6 uses the parameters of Experiment
I, whereas Fig. 7.7 uses the parameters of Experiment III; B1 is chosen equal to

7.5 A model for higher aggregation levels 111

0 10 20 30
9.66

9.68

9.7

9.72

9.74

9.76

9.78
Th

ro
ug

hp
ut

 (θ
)

Time between signals (ψ)

(a)

0 5 10 15 20 25
15

20

25

30

35

40

45

B2

f(θ
 , ψ

)

(b)

1.75θ +0.35ψ
2θ +0.005ψ
1.5θ +ψ

Figure 7.7: Trade-o¤ between throughput # and time between signals (elastic
tra¢ c).

25. The left panels show the trade-o¤ between # and , whereas the right panels
show the value of the objective function (for several choices of �1 and �2) as a
function of B2. In some of these examples it turns out that the objective function
is maximized by choosing B2 as small as possible. Evidently, this result is speci�c
for the performance measures (# and) and the objective function chosen; the
right panel of Fig. 7.6 shows that other choices may lead to a structurally di¤erent
outcome (there B2 should be chosen close to 25).

7.5 A model for higher aggregation levels

The experiments in the previous section involved a single source, but the main
�ndings carry over to the situation with multiple sources. This can be validated
in detail by redoing the numerical computations, but we here take an alternative
approach. This approach is simpler, and somewhat less precise, but still capable of
capturing the main trends.

Instead of having both a �uid content process (recorded by W (t)) and one or
multiple sources (recorded by X(t)), we model the bu¤er content (resulting from
the ensemble of all sources) by a birth-death-like process: during the �+�-phase the
bu¤er content behaves as an m/m/1 queue with arrival rate �+ and departure rate
�+, whereas during the ���-phase it behaves as an m/m/1 queue with arrival rate
�� (of tra¢ c quanta of size, say, 1) and departure rate ��. Thus, the rate of change
of the bu¤er is no longer determined by vectors r� and r+ and generator matrices
Q� and Q+ as before, but simply by birth-and-death parameters �+, �+; ��, ��.
What remains the same as before, is that these depend on the current mode (that

112 7 Design issues of Ethernet congestion control

is, �+�or ���), just as r and Q did before. To analyze a given situation, we can tune
the �+, �+; ��, �� (satisfying the equilibrium condition �� < ��), so that they
roughly match the �rst and second order characteristics of the bu¤er dynamics. For
this model we verify whether the trends, as observed in Section 7.3.1, still apply.

Let �+ be the duration of the �+�-phase, and �� the duration of the ���-phase.
It is immediate (for instance from Wald�s theorem) that

E�� =
B1 �B2
�� � ��

:

The computation of E�+ is standard, but a bit more tedious. With ai denote the
mean time until B1 is reached, starting in i 2 f0; : : : ; B1 � 1g, it is evident that

(�+ + �+)ai = �+ai+1 + �+ai�1 + 1; (7.5)

for i = 1; : : : ; B1 � 1; also �+a0 = �+a1 + 1 and aB1 = 0: With bi = ai+1 � ai; Eqn.
(7.5) can be rewritten as �+bi = �+bi�1 � 1, where b0 = �1=�+: It is then easy to
verify that

bi = �
(�+)i

(�+)i+1
�

1�

�
�+

�+

�i!,�
1� �+

�+

�
=

1

�+ � �+

 �
1

%+

�i+1
� 1
!
;

with %+ := �+=�+, and realizing that �ai = bi + � � �+ bB1�1 (use aB1 = 0),

E�+ = aB2 = �
B1�1X
j=B2

bj =
B1 �B2
�+ � �+

� 1

�+
1

1� %+
(%+)B2�B1 � 1

(%+)B2 � (%+)B2�1 ;

if �+ > �+, then this may be (roughly) approximated by (B1 �B2)=(�
+ � �+) (as

could be expected), whereas if �+ < �+, then it roughly equals

1

�+
1

(1� %+)2

�
1

%+

�B1
:

The signaling frequency equals ' = 2=(E�+ + E��); by virtue of �renewal reward�.
As is easily veri�ed, the mean time per cycle spent in state 0 is

E�+0 =
(%+)B1�B2 � 1

(%+)B1 � (%+)B1�1 ;

so that the throughput is given by

=
E�+ � E�+0
E�+ + E��

� 1
�+

+
E��

E�+ + E��
� 1
��

:

The thresholds B1 and B2 can be optimally selected by following a scheme similar to
the one sketched in Section 7.4. In Fig. 7.8 we consider an example that again focuses
on the trade-o¤ between the throughput # and the time between two consecutive
signals . We see the same type of behavior as in the single-source case. The input
parameters are �+ = 7, �+ = 5, �� = 4, �� = 5, so that there is a positive drift
during the �+�-phase. The thresholds are B1 = 25 and B2 = 10:

7.6 Concluding remarks 113

0.185 0.19 0.195 0.2 0.205
0

5

10

15

20
Th

ro
ug

hp
ut

 (θ
)

Time between signals (ψ)

(a)

0 5 10 15 20 25
0

5

10

15

20

B2

f(θ
 , ψ

)

(b)

1.75θ +0.35ψ
20θ+0.05ψ
1.5θ +ψ

Figure 7.8: Trade-o¤ between throughput # and time between signals for higher
aggregation model.

7.6 Concluding remarks

This chapter addressed a methodology for resolving design issues in backpressure-
based control mechanisms. Relying on a feedback �uid model Chapter 6, we derived
closed form expressions (in terms of the solution of certain eigensystems, and addi-
tionally a system of linear equations) for a number of key performance metrics. It
enables us to investigate in detail the trade-o¤s involved �for instance the trade-
o¤ between throughput and the signaling overhead �and thus facilitates a proper
selection of the protocol�s design parameters (such as the values of the thresholds).
It also sheds light on the e¤ect of changing the transmission rates. We also pre-
sented a more stylized model that is particularly useful when the input consists of
a substantially larger aggregate of users.

Part III

Scheduling

115

Introduction to Part III

Carrier Ethernet currently has the ability to categorize incoming tra¢ c into multiple
tra¢ c classes as explained in Chapter 1. The next step is to divide the network
resources over these tra¢ c classes in such a way that their requirements can be met.
Scheduling mechanisms ful�ll this purpose and are widely studied in literature in the
context of other packet technologies. These mechanisms can be broadly classi�ed
into two basic types: priority queueing (PQ) and weighted fair queueing (WFQ). PQ
provides absolute priority to the selected tra¢ c class over the lower priority ones.
Being in the high priority class is particularly suitable for time-sensitive tra¢ c as
their delay guarantees can be maintained. The disadvantage of PQ is that in times
of tra¢ c overload combined with absence of proper admission control, it can lead
to starvation of lower priority queues. WFQ and its variants aim at providing fair
bandwidth division among the various tra¢ c classes by guaranteeing each class a
certain minimum bandwidth. However, it is di¢ cult to maintain delay bounds with
this scheduling discipline. A combination of PQ andWFQ provides the possibility to
minimize delay and jitter guarantees for time-sensitive stream tra¢ c while allocating
bandwidth fairly among elastic �ows. Nevertheless, it remains essential to control
the tra¢ c load on the strict priority queue in order to avoid starvation of lower
priority tra¢ c. In absence of such control not only are the delay guarantees of the
high priority stream tra¢ c in jeopardy, but complete and consistent starvation of
lower priority elastic tra¢ c can lead to collapse of the TCP/elastic streams.

In this part of the thesis we do not intend to develop yet another scheduling
mechanism. Instead we aim at capturing the in�uence of high priority (stream)
tra¢ c load on the performance of the low priority (elastic) tra¢ c. This can assist
in the admission control of both stream and elastic tra¢ c into the network taking
their interaction into account.

In Chapter 8, we propose a simple yet e¤ective approximation of the performance
of elastic tra¢ c integrated with prioritized stream tra¢ c. The approximation is
based on modi�cations to processor sharing type of queueing models for elastic
tra¢ c performance accounting for the presence of prioritized stream tra¢ c. The
proposed prioritized model includes parameters for both elastic and stream tra¢ c
load We validate the accuracy of our model by comparison to simulations. We show
that the approximation works well for a wide range of parameter values.

117

Chapter 8

Integrating elastic tra¢ c with
prioritized stream tra¢ c

Current and emerging communications services and applications are extremely di-
verse in nature as they serve a wide range of end-user needs. However, the kind
of tra¢ c being generated by these applications and services can still be broadly
classi�ed into two basic categories: stream and elastic. Stream tra¢ c is generated
by applications such as VoIP, streaming video etc. These applications have strict
bandwidth, end-to-end packet delay and jitter requirements for reliable operation.
Elastic tra¢ c on the other hand is generated by applications such as �le-transfer,
web-browsing, etc. For these applications only the total amount of time required to
download the �le or web-page is of importance. The end-to-end delay of individual
packets and jitter are not relevant. In order to satisfy the strict delay requirements
of stream tra¢ c it is given priority over elastic tra¢ c at each hop in a network.
However, it is not the intention that this preferential treatment to stream tra¢ c
results in performance targets for elastic tra¢ c not being met.

The �ow level performance of elastic tra¢ c integrated with prioritized stream
tra¢ c has not received much attention in literature. References [79] and [9] consider
a priority system consisting of elastic streams only. Some articles such as [53] ad-
dress this issue by modeling service interruptions for a processor sharing system for
elastic tra¢ c. References [17] and [42] consider the integration of stream and elastic
tra¢ c and provide approximations. The drawback of the approach in [42] is that it
studies elastic �ow transfer times under large system asymptotics and does not con-
sider non-exponential service distributions. Reference [17] on the other hand poses
no limit on the server capacity or bandwidth which can be used by elastic �ows. In
practice, elastic �ows are often limited by policing rate, access rates or maximum
TCP window limitation. This fact needs to be accommodated in the model espe-
cially for metropolitan and core networks. AMarkov chain analysis of this problem is
available in [54]. This requires numerically solving the steady state solution which
turns out to be very computation intensive. This approach does not provide the

119

120 8 Integrating elastic tra¢ c with prioritized stream tra¢ c

possibility to capture the behavior in simple analytical expressions. Approximation
techniques are an alternative to Markov chain analysis. Existing methods such as
quasi-stationarity can provide simple approximations but are sometimes far too ab-
stract to capture the in�uence of all relevant parameters. In this chapter we bridge
the gap between these two approaches and propose a simple yet detailed approx-
imation, which captures the behavior and performance of both stream and elastic
tra¢ c in a priority system with tra¢ c control. We compare our approach on one
hand to simulations and on the other hand to existing approximation methods. We
assess the accuracy of our approximations for a wide range of parameters. Numeri-
cal results show that our proposed approximation outperforms other approximation
methods.

8.1 Model

In this section, we describe a model aimed at understanding the relation between
the performance of stream and elastic tra¢ c in a priority system and the in�uence
of admission control. We consider a �ow level model. Stream �ows are allocated a
�xed bandwidth when admitted into the system and treated with priority over elastic
tra¢ c. A simple control strategy is used for the high priority stream tra¢ c �ows.
When all the capacity is exhausted, further incoming stream calls are blocked. The
low priority tra¢ c consists of elastic �ows which adapt to server capacity available
after serving stream �ows. No form of admission control is exercised on the elastic
�ows. Both stream and elastic �ows are never served at more than a peak rate.

This model is motivated by the fact that the streaming �ows have strict band-
width and delay requirements which can be met if the requested capacity is allocated
to them completely. Therefore, it is preferred to block �ows whose requirements can-
not be met rather than allow them into the system and jeopardize the performance
of every �ow. This also implies that once the bandwidth/capacity is completely
saturated further stream �ows should not be admitted into the system. Since elastic
�ows adapt to server capacity it is not necessary to block them but should be served
with low priority so as not to jeopardize the delay requirements of the stream �ows.
Our model also uses a peak rate for both stream and elastic tra¢ c. This limitation
can be justi�ed by the limit imposed by policers, access rates and TCP window.

The model we consider is aM=G=C system serving two priority classes, as shown
in Figure 8.1. The high priority tra¢ c consists of stream �ows. We renormalize the
bandwidth such that their peak rate is 1 and this capacity is allotted to each stream
�ow admitted in the system. Each �ow occupies this unit server capacity for a
certain period of time called the service time requirement of the �ow. High priority
stream �ows are admitted into the system as long as there is capacity available. This
implies that if there are already C high priority �ows in the systems (each occupying
unit server capacity), further incoming stream �ows will be blocked and dropped.

8.2 Analysis of high priority tra¢ c 121

•High priority queue
•Blocking

•Low priority queue

•Fixed server
•capacity, C

•Strict priority
•scheduling

•High priority

•C

•Stream traffic flows

•No Blocking

•Fixed server
•capacity, C

•Strict priority
•scheduling

•C

•Low priority
•Elastic traffic flows

λH

λL

•High priority queue
•Blocking

•Low priority queue

•Fixed server
•capacity, C

•Strict priority
•scheduling

•High priority

•C

•Stream traffic flows

•No Blocking

•Fixed server
•capacity, C

•Strict priority
•scheduling

•C

•Low priority
•Elastic traffic flows

λH

λL

Figure 8.1: A model for stream and elastic tra¢ c in a priority system with admission
control.

We assume that high priority stream calls arrive into the system according to a
Poisson process with rate �H . The service time requirements of the high priority
tra¢ c are generally distributed with cumulative distribution BH(�) and �nite �rst
two moments �H and �

(2)
H .

The lower priority class is a processor sharing system. This means that the
capacity left over from serving stream �ows is equally divided among the elastic
tra¢ c �ows. Processor sharing queues have been shown to be e¤ective in modeling
elastic streams that use the transport control protocol [68], [67]. The capacity left
over for the elastic �ows varies in time and is reduced to zero if there are C stream
�ows in the system, where C is an integer. The low priority tra¢ c �ows are served
with processor sharing with a peak rate of 1. This implies that when the number of
low priority tra¢ c �ows in the system is less than C � NH each �ow receives unit
server capacity and when the number of �ows are greater than C � NH each �ow
receives (C � NH)=NL server capacity, where, NH and NL are the number of high
and low priority �ows respectively and vary over time. We assume that low priority
tra¢ c �ows arrive according to a Poisson process with rate �L. The service time
requirements of the low priority customers are generally distributed with cumulative
distribution BL(�) and �nite �rst two moments �L and �

(2)
L .

It might seem a limitation of the model that it considers equal peak rate for
both stream and elastic tra¢ c. In this regard it is interesting to note that since
stream tra¢ c can potentially occupy the complete server capacity, it is evident that
in moderate to high load situations the e¤ective rate (peak rate) received by the
lower priority elastic tra¢ c will always be less than that of the stream tra¢ c.

8.2 Analysis of high priority tra¢ c

For high priority stream tra¢ c each �ow is served at unit rate. Thus each stream
occupies one server (of unit capacity) out of the C servers. If there are already C high

122 8 Integrating elastic tra¢ c with prioritized stream tra¢ c

priority �ows in the system then any new �ow arrivals are lost. Hence this reduces
to an Erlang loss queue i.e., aM=G=C=C system with exponential interarrival times,
general service time distribution, C servers and no waiting room. The probability
of blocking or rather loss for the high priority tra¢ c �ows can be directly obtained
from the well-known Erlang Loss Formula

Ploss =
(�H�H)

C

C!

CX
n=0

(�H�H)
n

n!

; (8.1)

and the probability of n high priority �ows in the system is given by

P[NH = n] =
(�H�H)

n

n!

CX
k=0

(�H�H)
k

k!

; where n = 1; :::; C: (8.2)

The e¤ective arrival rate of the high priority �ows for this system can be computed
as

�H;e¤ective = �H � (1� Ploss): (8.3)

8.3 Analysis of low priority tra¢ c

The analysis of the sojourn time for the low priority �ows is far more complicated
than the high priority �ows. The complication is due to the fact that the capacity
available for the low priority �ows �uctuates over time. In addition, if the number
of high priority tra¢ c �ows is equal to C; the low priority elastic tra¢ c experiences
starvation, i.e., its service rate equals zero for that period of time. The complete
system is a mix of a M=G=C=C Erlang loss queue and a processor sharing system.
A closed form formula for the sojourn time in such a system is not available in
literature so far. In this section our goal is to provide some approximations for the
sojourn time of such a system. First, we review some results from processor sharing
modeling theory which plays an important role in modeling the performance of
the elastic �ows and in the approximations we propose. We then provide three
approximations for the average �le transfer time which is the same as the average
sojourn time (E[SL]) of the �le in the system.

8.3.1 Processor Sharing theory

In this subsection we will review some standard results from processor sharing mod-
els. Processor sharing (PS) models are well-suited for capturing the elastic behavior

8.3 Analysis of low priority tra¢ c 123

of TCP tra¢ c that adapts its transmission rate to the available network capacity. In
the standard PS model, the server capacity is divided equally among all tra¢ c �ows
in the system. The reader is referred to [89] and [88] for an overview of results on
standard PS models. An interesting generalization of the PS model is the so-called
generalized processor sharing (GPS) model which allows the service rate for each
tra¢ c �ow to be state dependent [13]. Consequently, if there are n tra¢ c �ows in
the system, each tra¢ c �ow receives a fraction f(n) of the service speed. The joint
stationary distribution of the number of tra¢ c �ows N and their residual service
time requirements T := (T (1); :::; T (N)) can be given by (cf., e.g.[13])

P[N = n; T = �] =
(�n=n!)�(n)
CX
k=0

(�k=k!)�(k)

nY
i=1

1�B(�(i))

�
; for n = 0; 1; :::; �(i) > 0; (8.4)

where �(0) = 1; �(n) = (
Qn

i=1 f(i))
�1
; � = ��, � is the average Poisson arrival

rate of �ows into the system, B(�) is the distribution function of the service time
requirements and � is the average service time requirement. Further in this chapter
we will consider a special case of a GPS system where the rate at which each tra¢ c
�ow is served whenever there are i tra¢ c �ows in the system is given by f(i) = 1 if
0 � i � C, and f(i) = C=i if i > C. The mean number of tra¢ c �ows E[NGPS(�; C)],
in this GPS model for 0 � � < C is given by

E[NGPS(�; C)] =
CC

C!A(C; �)

�
C(�=C)C+1

1� �=C
+
(�=C)C+1

(1� �=C)2

�
+

1

A(C; �)

CX
n=1

�

(n� 1)! ;

(8.5)

with

A(C; �) =
CC

C!

(�=C)C+1

1� �=C
+

CX
n=0

�n

n!
:

8.3.2 Simple and known approximation techniques

In this subsection we will introduce straightforward approximations for the perfor-
mance of low priority elastic �ows. The �rst technique is based on quasi-stationarity
and the second technique is based on an estimation of the left over capacity for elastic
�ows.

Approximation 1, based on quasi-stationarity:

Here we present an approximation based on quasi-stationarity. If we assume that
there are i high priority tra¢ c streams in the system, then the left over capacity for

124 8 Integrating elastic tra¢ c with prioritized stream tra¢ c

the low priority �ows is (C � i). Therefore, the average sojourn time (�le transfer
time) for low priority �ows can be computed using Equation (8.5) with capacity
(C � i) instead of C. If this value is multiplied by the probability that there are i
tra¢ c �ows in the high priority queue (P[NH = i]) and summed over all possible
values of i we obtain Approx1; the estimate of the average sojourn time for elastic
tra¢ c �ows.

Approx1 =
CP
i=0

E[NGPS(�L; C � i)]

�L
P[NH = i]: (8.6)

It is important to note that for values of NH su¢ ciently close to C; there is
negligible capacity left over for the low priority tra¢ c and as a result the GPS
model and the above approximation becomes unstable. Therefore, while analysing
the performance of this approximation we chose to leave out the sojourn time results
where P[NH = C] was not negligible.

Approximation 2, based on estimation of available capacity for elastic
tra¢ c:

Here we propose a simple approximation based on the estimation of left over ca-
pacity for elastic �ows. We �rst calculate the expected number of high priority
tra¢ c �ows E[NH]. This value is then rounded o¤ to an integer value RND(E[NH]).
The low priority system can then be assumed to be a GPS system with capacity
C�RND(E[NH]).

Approx2 =
E[NGPS(�L; C � RND(E[NH]))]

�L
; (8.7)

where, 0 � �L < fC�RND(E[NH])g: There are several evident drawbacks of this
approximation. Firstly it depends on high priority tra¢ c only through E[NH]; thus
�uctuations in NH are not taken into account. Since E[NH] is a function of �H ,
Approx2 is also a function of �H and is insensitive to the individual values of �H and
�H . Finally, the accuracy of this approximation depends greatly on the e¢ ciency of
the rounding o¤. Greater the di¤erence between the original E[NH] and the rounded
o¤ value, larger the error with Approx2:

8.3.3 Approximation 3, New enhanced sojourn time ap-
proximation

The approximations Approx1 and Approx2 proposed in the previous section are
straightforward but on the other hand have evident drawbacks. Approx1 andApprox2
are completely insensitive to the higher moments of the service time requirement dis-
tributions of both stream and elastic tra¢ c. Here we present an approximation for

8.3 Analysis of low priority tra¢ c 125

which this insensitivity property does not hold. The basic idea of the approximation
is to focus on the workload. Let us denote by WH the total workload of the high
priority tra¢ c �ows, by WL the total workload of the low priority tra¢ c �ows and
by WH+L the total workload of the complete system. For C > 1

E[WH] + E[WL] = E[WH+L] � E[Wmix]; (8.8)

where Wmix stands for the total amount of un�nished work in the corresponding
GPS system without priorities (referred to as the mixed system), i.e. the system
with

�mix � �H;e¤ective + �L; (8.9)

�mix �
�H;e¤ective�H
�H;e¤ective + �L

+
�L�L

�H;e¤ective + �L
;

�
(2)
mix �

�H;e¤ective�
(2)
H

�H;e¤ective + �L
+

�L�
(2)
L

�H;e¤ective + �L
: (8.10)

The original system contains a non-GPS part, i.e., the high priority part and a GPS
low priority part. However, we approximate the original system as a lossless GPS
system with total load �H;e¤ective+L = �H;e¤ective + �L = �H;e¤ective�H + �L�L. Since
the approximate system is lossless we use �H;e¤ective and not �H . The mean number
of tra¢ c �ows E[NGPS(�H;e¤ective+L)] in this GPS system for 0 � �H;e¤ective+L < C
can be computed by using Equation (8.5). Hence, the total workload of the mixed
system can be expressed as

E[WH+L] � E[Wmix] =
�
(2)
mix

2�mix
E[NGPS(�H;e¤ective+L; C)]. (8.11)

For the high priority tra¢ c �ows we have

E[WH] =
�
(2)
H

2�H
E[NH]; (8.12)

where E[NH] is obtained using Equation (8.2).

Now we can approximate the mean workload of the low priority tra¢ c �ows as
follows using Equation (8.2),

E[WL] � E[Wmix]� E[WH];

and hence,

E[WL] �
�
(2)
mix

2�mix
E[NGPS(�H;e¤ective+L; C)]�

�
(2)
H

2�H
E[NH]. (8.13)

126 8 Integrating elastic tra¢ c with prioritized stream tra¢ c

For high priority tra¢ c �ows the amount of un�nished work is the independent sum
of the remaining service times of all high-priority tra¢ c �ows in the system. We
adopt this idea to the low priority tra¢ c �ows to obtain the following approximate
relation between the number of low priority tra¢ c �ows E[NL] and corresponding
mean amount of un�nished work E[WL]:

E[NL] �
E[WL]

�
(2)
L =2�L

: (8.14)

Note that this relation is generally not exact, unless the service times for low priority
tra¢ c �ows are exponentially distributed. Combining Equations (8.13), (8.14) and
Little�s law we have the third approximation for the �le transfer or sojourn time as

Approx3 =
2�L

�L�
(2)
L

�
(2)
mix

2�mix
E[NGPS(�H;e¤ective+L; C)]�

2�L

�L�
(2)
L

�
(2)
H

2�H
E[NH]). (8.15)

The accuracy of the proposed approximation and the comparison among the di¤erent
approximations is assessed in the next section.

8.4 Results

In this section our goal is to assess the accuracy of the approximations proposed
in Sections 8.3.2 and 8.3.3. The accuracy is assessed by comparing the approxima-
tions to accurate simulations of the model. Two types of service time requirement
distributions are considered: exponential and hyper-exponential. The exponential
distribution is the relatively simple case, as it does not involve many parameters and
for which Equation (8.14) is exact. For the hyper-exponential distribution however,
this is not the case. The hyper-exponential distribution contains many parameters
which can be varied and thus helps in understanding a di¤erent aspect of the service
time distribution. Since none of the approximated steps are exact for this distrib-
ution, it is also a good check of the accuracy. The results presented in this section
are with the load per server of the low priority tra¢ c kept constant at 0:5 whereas
the load of the high priority is increased in gradual steps from 0:1 to 0:45. Various
server capacity i.e., C values are considered along with the two cases �H < �L and
�H > �L: The results for �H = �L were similar to �H < �L, so we do not present
them in the chapter. We de�ne the percentage error between the exact simulations
values and the approximated values as

�i =
Exact� Approxi

Exact
� 100. (8.16)

8.4 Results 127

Approx2

Approx3

Exact

•0

•0.5

•1

•1.5

•2

•2.5

•3

•3.5

•4

•4.5

•0.6 •0.7 •0.8 •0.9 •0.95
•load

•m
ea

n
so

jo
ur

n
tim

e

•Exact
•Approx2

•Approx3

Approx2

Approx3

Exact

•0

•0.5

•1

•1.5

•2

•2.5

•3

•3.5

•4

•4.5

•0.6 •0.7 •0.8 •0.9 •0.95
•load

•m
ea

n
so

jo
ur

n
tim

e

•Exact
•Approx2

•Approx3

Figure 8.2: Exact and approximated mean sojourn times for low priority tra¢ c for
di¤erent values of load per server for �H=�L = 1=4 and C = 4:

8.4.1 Exponential service time distribution

In this section we consider an exponential service time requirement distribution
for both high and low priority tra¢ c. We keep the load per server of the low
priority tra¢ c �xed to �L=C = 0:5 but vary the load of the high priority tra¢ c i.e.,
�H=C = 0:1; 0:2; 0:3; 0:4; 0:45 and observe the in�uence on the results and accuracy
of the approximation.

Figures 8.2, 8.3 and 8.4 show results for C = 4; 10 and 20 respectively for the
case �H = 1=4 and �L = 1: Figure 8.2 shows the mean sojourn times for low priority
tra¢ c as a function of the load per server values obtained from simulations (exact),
and for Approx2 and Approx3. Approx1 does not yield meaningful results in this
case. This is due to the fact that there is a reasonable chance that NH is su¢ ciently
close to C, not leaving enough capacity for the low priority system, making it un-
stable (see Equation (8.7)). Approx2 on the other hand greatly underestimates the
sojourn time. This is because the rounding o¤ of E[NH] to an integer overestimates
the original value of E[NH]. For high load values, Approx2 fails to provide results.
This is because the rounding o¤ error leaves no capacity for low priority elastic traf-
�c making the system unstable. Approx3 performs very well in this case and the
errors are below 4% even for large load and loss probabilities.

Figure 8.3 and 8.4 show similar trends as Figure 8.2. Approx1 continues to
greatly overestimate the sojourn times. Only for larger C = 20 and very low load it
performs reasonable. The performance of Approx2 improves considerably for large
C values. The best results are with C = 20 where it follows the trends quite well.
The error is of the order of 13%. However, Approx3 clearly outperforms Approx1
and Approx2 with errors below 3%.

128 8 Integrating elastic tra¢ c with prioritized stream tra¢ c

•0

•0.5

•1

•1.5

•2

•2.5

•3

•0.6 •0.7 •0.8 •0.9 •0.95
•load

•m
ea

n
so

jo
ur

n
tim

e
• Exact
•Approx2

•Approx3

•0

•0.5

•1

•1.5

•2

•2.5

•3

•0.6 •0.7 •0.8 •0.9 •0.95
•load

•m
ea

n
so

jo
ur

n
tim

e
• Exact
•Approx2

•Approx3

Figure 8.3: Exact and approximated mean sojourn times for low priority tra¢ c for
di¤erent values of load per server for �H=�L = 1=4 and C = 10:

•0

•0.5

•1

•1.5

•2

•2.5

•3

•0.6 •0.7 •0.8 •0.9 •0.95
•load

•m
ea

n
so

jo
ur

n
tim

e

Exact
Approx1

Approx2

Approx3

•0

•0.5

•1

•1.5

•2

•2.5

•3

•0.6 •0.7 •0.8 •0.9 •0.95
•load

•m
ea

n
so

jo
ur

n
tim

e

Exact
Approx1

Approx2

Approx3

Figure 8.4: Exact and approximated mean sojourn times for low priority tra¢ c for
di¤erent values of load per server for �H=�L = 1=4 and C = 20:

8.4 Results 129

•0

•2

•4

•6

•8

•10

•12

•14

•0.6 •0.7 •0.8 •0.9 •0.95
•load

•m
ea

n
so

jo
ur

n
tim

e Exact

Approx2

Approx3

•0

•2

•4

•6

•8

•10

•12

•14

•0.6 •0.7 •0.8 •0.9 •0.95
•load

•m
ea

n
so

jo
ur

n
tim

e Exact

Approx2

Approx3

Figure 8.5: Exact and approximated mean sojourn times for low priority tra¢ c for
di¤erent values of load per server for �H=�L = 4 and C = 4:

•0

•1

•2

•3

•4

•5

•6

•7

•8

•9

•0.6 •0.7 •0.8 •0.9 •0.95
•load

•m
ea

n
so

jo
ur

n
tim

e •Exact
•Approx2

Approx3

•0

•1

•2

•3

•4

•5

•6

•7

•8

•9

•0.6 •0.7 •0.8 •0.9 •0.95
•load

•m
ea

n
so

jo
ur

n
tim

e •Exact
•Approx2

Approx3

Figure 8.6: Exact and approximated mean sojourn times for low priority tra¢ c for
di¤erent values of load per server for �H=�L = 4 and C = 10:

130 8 Integrating elastic tra¢ c with prioritized stream tra¢ c

•0
•0.5

•1
•1.5

•2
•2.5

•3
•3.5

•4
•4.5

•5

•0.6 •0.7 •0.8 •0.9 •0.95
•load

•m
ea

n
so

jo
ur

n
tim

e

Exact
Approx1

Approx2

Approx3

•0
•0.5

•1
•1.5

•2
•2.5

•3
•3.5

•4
•4.5

•5

•0.6 •0.7 •0.8 •0.9 •0.95
•load

•m
ea

n
so

jo
ur

n
tim

e

Exact
Approx1

Approx2

Approx3

Figure 8.7: Exact and approximated mean sojourn times for low priority tra¢ c for
di¤erent values of load per server for �H=�L = 4 and C = 20:

Figures 8.5, 8.6 and 8.7 show results for the case �H > �L with �H = 4 and
�L = 1 for C = 4; 10 and 20 respectively: Similar trends can be observed as for the
case with �H < �L; however the absolute errors with Approx3 are distinctly larger
especially for smaller C values. For C = 4 the maximum error is of the range of 38%
whereas with C = 20 the maximum error is about 10% for load of 0.95. Lower load
values, show a much smaller error. It is important to understand why the accuracy
of Approx3 is so much better for �H < �L than for �H > �L. We approximate a
priority system with a GPS system without priorities. The approximate GPS system
treats all �ows equally thus favoring �ows with smaller service time requirement over
larger ones. This implies that for �H < �L; both the original and the approximate
system favor the �ows with smaller service time requirement. Thus the errors in
this case are very small. For the situation that �H > �L; the approximate system
continues to favor smaller service time requiring �ows whereas the original system
favors or prioritizes stream calls having a larger service time requirement: Therefore,
in this case the di¤erence between the approximate and the original system is larger
leading to larger errors.

In spite of reduced accuracy with Approx3, we observe that it still outperforms
Approx1 and Approx2. Nevertheless, we do conclude that Approx3 is not suitable
for access networks where link capacities are likely to be small.

8.4.2 Hyper-Exponential service time distribution

In this subsection we assess the accuracy of the approximations for a non-exponential
distribution namely the hyper-exponential distribution. In contrast to the exponen-
tial distribution, the hyper-exponential distribution provides insight into the in�u-

8.4 Results 131

•0.5

•1

•1.5

•2

•2.5

•0.6 •0.7 •0.8 •0.9 •0.95
•load

•m
ea

n
so

jo
ur

n
tim

e

•1 vs 4
•4 vs 1
•approx1
•approx2
•approx3
•approx3 (4,1)

1,4

4,1
22

22

==

==

LH

LH

cc

cc

1,4

4,1
22

22

==

==

LH

LH

cc

cc
Approx2
Approx3

Approx1

Approx3

•0.5

•1

•1.5

•2

•2.5

•0.6 •0.7 •0.8 •0.9 •0.95
•load

•m
ea

n
so

jo
ur

n
tim

e

•1 vs 4
•4 vs 1
•approx1
•approx2
•approx3
•approx3 (4,1)

1,4

4,1
22

22

==

==

LH

LH

cc

cc

1,4

4,1
22

22

==

==

LH

LH

cc

cc
Approx2
Approx3

Approx1

Approx3

Figure 8.8: Exact and approximated values of the average sojourn times for C = 20,
�H = 0:25; �L = 1 of various values of load per server.

ence of the variance of the service time distribution. The sensitivity and accuracy
of the di¤erent approximations to the variation is also assessed. We consider hyper-
exponential distribution with balanced means [78]. The coe¢ cient of variation is
used as a measure of variation and the following cases are considered: c2H > c2L;
c2H < c2L and c

2
H = c2L: The average service time requirement considered includes

both possibilities, �H < �L as well as �H > �L:

Figures 8.8 and 8.9 demonstrate the sensitivity and accuracy ofApprox1, Approx2
and Approx3 for C = 20. It is clear from both the �gures that Approx3 outperforms
Approx1 and Approx2. In fact Approx1 and Approx2 are completely insensitive to
the choice of the coe¢ cient of variation. The accuracy of Approx3 is greatly in�u-
enced by the value of the coe¢ cient of variation and as before the ratio of �H to �L.
The results in Figure 8.8 for �H=�L = 1=4 show excellent accuracy of Approx3 with
errors below 3%. However, the results of Figure 8.9 for �H=�L = 4 show that the
ratio of the coe¢ cients of variation a¤ects the performance of Approx3. For c2H < c2L;
Approx3 continues to perform very well with errors below 4%, but for c2H > c2L the
error can rise to 25% for large load per server values. Therefore, a combination of
�H > �L and c

2
H > c2L is clearly a weakness of Approx3.

Figures 8.10 and 8.11 show the exact and approximated mean sojourn times for
low priority tra¢ c for C = 4 and 20 respectively with di¤erent load per server,
coe¢ cients of variations with c2H = c2L; �H = 1=4 and �L = 1. It is important
to note that when c2H = c2L; Approx3 is also insensitive to the exact values of the
coe¢ cients of variations. The conclusions which can be drawn from these cases are
similar to the exponential distribution case. Approx1 and Approx2 do not perform
well. Approx3 on the contrary, performs very well with maximum errors of about
5% under high load situations.

132 8 Integrating elastic tra¢ c with prioritized stream tra¢ c

•0
•1

•2

•3
•4
•5

•6

•7
•8

•9

•0.6 •0.7 •0.9 •0.95

•m
ea

n
so

jo
ur

n
tim

e
•1 vs 4
•4 vs 1
•approx1
•approx2
•approx3
•approx3 (4,1)

•1•,•4
•4•,•1

•2•2

•2•2

•=•=
•=•=

•L•H

•L•H

•c•c
•c•c

•1•,•4•
•4•,•1•

•2•2

•2•2

•=•=
•=•=

•L•H

•L•H

•c•c
•c•c

•0.8
load

Approx2

Approx3

Approx1

Approx3

•0
•1

•2

•3
•4
•5

•6

•7
•8

•9

•0.6 •0.7 •0.9 •0.95

•m
ea

n
so

jo
ur

n
tim

e
•1 vs 4
•4 vs 1
•approx1
•approx2
•approx3
•approx3 (4,1)

•1•,•4
•4•,•1

•2•2

•2•2

•=•=
•=•=

•L•H

•L•H

•c•c
•c•c

•1•,•4•
•4•,•1•

•2•2

•2•2

•=•=
•=•=

•L•H

•L•H

•c•c
•c•c

•0.8
load

Approx2

Approx3

Approx1

Approx3

Figure 8.9: Exact and approximated values of the average sojourn times for C = 20,
�H = 4; �L = 1 of various values of load per server.

Approx2

Approx3

•0.5
•1

•1.5
•2

•2.5
•3

•3.5
•4

•4.5
•5

•0.6 •0.7 •0.8 •0.9 •0.95

•m
ea

n
so

jo
ur

n
tim

e •coeff var 1

•coeff var 4
•coeff var 9

•coeff var16 •16•
•9•
•4•
•1•

•2•2

•2•2

•2•2

•2•2

•=•=
•=•=
•=•=
•=•=

•L•H

•L•H

•L•H

•L•H

•c•c
•c•c
•c•c
•c•c

•m
ea

n
so

jo
ur

n •
tim

e

•load

Approx2

Approx3

•0.5
•1

•1.5
•2

•2.5
•3

•3.5
•4

•4.5
•5

•0.6 •0.7 •0.8 •0.9 •0.95

•m
ea

n
so

jo
ur

n
tim

e •coeff var 1

•coeff var 4
•coeff var 9

•coeff var16 •16•
•9•
•4•
•1•

•2•2

•2•2

•2•2

•2•2

•=•=
•=•=
•=•=
•=•=

•L•H

•L•H

•L•H

•L•H

•c•c
•c•c
•c•c
•c•c

•m
ea

n
so

jo
ur

n •
tim

e

•load

Figure 8.10: Exact and approximated mean sojourn times for low priority tra¢ c for
di¤erent values of load per server, coe¢ cient of variations, with �H=�L = 1=4 and
C = 4:

8.5 Conclusions 133

•0

•0.5

•1

•1.5

•2

•2.5

•3

•0.6 •0.7 •0.8 •0.9
•load

•m
ea

n
so

jo
ur

n
tim

e
•coeff 1
•coeff 4
•coeff 9
•coeff16
•approx1
•approx2
• approx3

•16
•9
•4
•1

•2•2

•2•2

•2•2

•2•2

•=•=
•=•=
•=•=
•=•=

•L•H

•L•H

•L•H

•L•H

•c•c
•c•c
•c•c
•c•c

Approx3

Approx2

Approx1

•0.95
•0

•0.5

•1

•1.5

•2

•2.5

•3

•0.6 •0.7 •0.8 •0.9
•load

•m
ea

n
so

jo
ur

n
tim

e
•coeff 1
•coeff 4
•coeff 9
•coeff16
•approx1
•approx2
• approx3

•16
•9
•4
•1

•2•2

•2•2

•2•2

•2•2

•=•=
•=•=
•=•=
•=•=

•L•H

•L•H

•L•H

•L•H

•c•c
•c•c
•c•c
•c•c

Approx3

Approx2

Approx1

•0.95

Figure 8.11: Exact and approximated mean sojourn times for low priority tra¢ c for
di¤erent values of load per server, coe¢ cient of variations, with �H=�L = 1=4 and
C = 20:

In Figures 8.12 and 8.13 we consider various coe¢ cients of variation with c2H = c2L;
�H > �L for C = 4; and 20 respectively. The performances of Approx1 and Approx2
are as before. Approx2, however performs better in the case �H=�L = 1=4 with
C = 20 than with �H=�L = 4: Approx3 still performs the best but its performance
is worse as compared to the case with �H=�L = 1=4: For C = 4, the errors are
very high, but with C = 10 the errors are at a maximum of 11%. For C = 20 the
performance is almost as same as with �H=�L = 1=4 with maximum errors of only
6%.

8.5 Conclusions

In this chapter we have proposed a model and approximations to quantify the trade-
o¤between control and performance of elastic tra¢ c when integrated with prioritized
stream tra¢ c. We de�ned a simple model with two priority classes, where the stream
tra¢ c class is served with higher priority over the elastic tra¢ c class. It is assumed
that both stream and elastic tra¢ c have the same peak rate. Stream tra¢ c which is
admitted is served at its peak rate whereas the lower priority elastic tra¢ c is served
with processor sharing. We used a simple control strategy for the stream tra¢ c, i.e.,
the streams are admitted and served at their peak rate as long as there is capacity in
the network; else they are blocked and dropped. The elastic tra¢ c takes advantage
of the �uctuations in the number of high priority streams. The arrival of both tra¢ c

134 8 Integrating elastic tra¢ c with prioritized stream tra¢ c

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16•

•9•

•4•

•1•

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•0

•2

•4

•6

•8

•10

•12

•14

•0.6 •0.7 •0.8 •0.9 •0.95
•load

•m
ea

n
so

jo
ur

n
tim

e
•coeff var 4
•coeff var 9
•coeff var16
•Approx2

•Approx3

•16•

•9•

•4•

•1•

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16•

•9•

•4•

•1•

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16•

•9•

•4•

•1•

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16•

•9•

•4•

•1•

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•0

•2

•4

•6

•8

•10

•12

•14

•0.6 •0.7 •0.8 •0.9 •0.95
•load

•m
ea

n
so

jo
ur

n
tim

e
•coeff var 4
•coeff var 9
•coeff var16
•Approx2

•Approx3

•16•

•9•

•4•

•1•

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16•

•9•

•4•

•1•

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•16•

•9•

•4•

•1•

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

Figure 8.12: Exact and approximated mean sojourn times for low priority tra¢ c
for di¤erent values of load per server, coe¢ cients of variations with �H=�L = 4 and
C = 4:

•0

•0.5

•1

•1.5

•2

•2.5

•3

•3.5

•4

•4.5

•5

•0.6 •0.7 •0.8 •0.9 •0.95
•load

•m
ea

n
so

jo
ur

n
tim

e

•coeff var 1
•coeff var 4
•coeff var 9
•coeff 16

•Approx1

•Approx2
•Approx3

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

•0

•0.5

•1

•1.5

•2

•2.5

•3

•3.5

•4

•4.5

•5

•0.6 •0.7 •0.8 •0.9 •0.95
•load

•m
ea

n
so

jo
ur

n
tim

e

•coeff var 1
•coeff var 4
•coeff var 9
•coeff 16

•Approx1

•Approx2
•Approx3

•16

•9

•4

•1

•2•2

•2•2

•2•2

•2•2

•=•=

•=•=

•=•=

•=•=

•L•H

•L•H

•L•H

•L•H

•c•c

•c•c

•c•c

•c•c

Figure 8.13: Exact and approximated mean sojourn times for di¤erent load per
server values and coe¢ cients of variation with c2H = c2L; C = 20 and �H=�L = 4:

8.5 Conclusions 135

types was assumed to be Poisson, but their service time requirement distribution
could be any generic distribution.

The model presented cannot be solved explicitly. To overcome this problem, we
proposed an approximation which on one hand is simple and on the other hand
is detailed enough to capture the in�uence of a wide range of parameters. The
accuracy of the approximation was compared to simulations of the model as well as
other simple approximation techniques. One of the alternative approximations was
based on quasi-stationarity and the other simply on estimation of average left over
capacity for the low priority elastic tra¢ c.

The performance results support the conclusion that for all the cases and para-
meters considered our approximation works best and is a considerable improvement
over the other known ways of performance approximations. However, our proposed
approximation also has its weak points. It performs worst for the combination of
several factors: small values of total capacity C, high load per server, service time
requirement of stream tra¢ c a lot larger than that of the lower priority elastic tra¢ c
(�H > �L) and high variation in high priority tra¢ c service requirement distribution
especially with c2H > c2L.

It might seem that in our proposed approximation, the assumption of equal
peak rate for both stream and elastic tra¢ c is very restrictive and not always true
in practice. However, it is important to note that the case with high load combined
with the fact that all available capacity can be occupied by high priority tra¢ c
implies that the e¤ective peak rate achieved by low priority elastic tra¢ c will never
be the same as for stream tra¢ c. This fact indicates that the error with di¤erent
peak rates for high and low priority tra¢ c should be comparable to the results
presented in this chapter.

Concluding remarks

In this thesis, we have addressed three key QoS mechanisms for Carrier Ethernet
networks: tra¢ c policing, congestion control and scheduling.

Tra¢ c policing is the �rst hurdle that tra¢ c entering an Ethernet public network
faces. It is not su¢ cient to monitor and penalize the incoming tra¢ c to conform
to a strict tra¢ c contract. It is equally important to understand the e¤ect of this
mechanism on di¤erent tra¢ c types and their performance. We have shown that
if policing is done without keeping into account the characteristics of the higher
layer applications the resulting throughput can be signi�cantly lower than the con-
tractual rate. In Part I of this thesis we have presented and analyzed two policing
methods, the �rst based on an Ethernet backpressure warning signal and the second
based on a dynamic token bucket. The warning signal to the customer results in im-
proved throughput performance for TCP tra¢ c through bu¤ering and smoothening
of packet transmissions. For UDP tra¢ c this works well if this tra¢ c type is given
priority or by using the extensions proposed in [29]. The dynamic token bucket
policer improves TCP performance by adapting to di¤erent tra¢ c pro�les caused
by di¤erences in round trip times, link capacities, policing rates and number of TCP
�ows simultaneously in progress. Results indicate that in most cases the dynamic
bucket converges to the optimal token bucket size required speci�c to the scenario
considered.

Having eliminated the non-optimal interactions of higher layer tra¢ c with a
policer, we addressed the congestion problems which could arise in nodes further in
the network. This congestion could be caused by the inherent unpredictable nature
of user tra¢ c as well as by the aggregation and multiplexing of the di¤erent policed
�ows. In Part II of the thesis we have analyzed the use of feedback �ow control as a
way to manage this congestion. This possibility is provided by the standard IEEE
802.3x backpressure method or possibly one of its variants proposed in literature.
The strength of our analysis lies in the fact that we provide insightful analytical
relations between the congestion detection threshold settings and performance of
higher layer, stream and elastic application tra¢ c. For example, the transfer time
of a data �le and expected packet delay for real-time streaming applications can be
computed for a given choice of thresholds. With an extensive numerical study of
the proposed model we have demonstrated how the thresholds can be con�gured to

137

138 Concluding Remarks

achieve the desired trade-o¤s between signaling frequency, throughput and delay.
We have also shown that the bene�t of using the backpressure method is especially
evident for TCP data tra¢ c with large round trip times, extreme burstiness or low
to moderate tra¢ c loads.

Having addressed the policing and congestion control issues for TCP elastic and
UDP stream tra¢ c separately in Parts I and II, we addressed the integration of these
two tra¢ c types in Part III of the thesis. There we designed a model where elastic
tra¢ c is handled with lower priority than stream tra¢ c. Furthermore, tra¢ c control
is exercised on the stream tra¢ c. The approximation proposed is as desired, simple,
yet quite accurate in predicting the performance of elastic tra¢ c �ows in relation to
the tra¢ c load and blocking probability of the prioritized stream tra¢ c. Accuracy
of the approximation was assessed for di¤erent values of the total available capacity,
system load and service requirement of stream and elastic tra¢ c. For all the cases
and parameters considered we have shown that our approximation is a considerable
improvement over the other known ways of performance approximations such as a
quasi-stationarity based method.

The �gure above summarizes our contributions and their applicability to a typical
Carrier Ethernet ingress node operating in a metropolitan area network. In an egress
or core node, the tra¢ c policing function is absent and only the results from Part
II and Part III apply.

Future Research

In this section, we suggest some possibilities to continue the research presented in
this thesis. The topics for future work speci�c to each model and/or mechanism

Future Research 139

analyzed in this thesis have already been discussed in the respective chapters. In
this section we suggest some overall directions for future research spanning all the
chapters of this thesis.

� Interaction of QoS mechanisms: The tra¢ c policing, congestion control and
scheduling mechanisms have been designed and analyzed separately in this
thesis. A logical next step to this research is to study the interaction of these
mechanisms in a single framework and include other QoS mechanisms as well.
It would be worthwhile to assess if the analysis and guidelines we have proposed
are also valid when these mechanisms coexist.

� Multiple node scenarios: In this thesis we have analyzed the proposed mecha-
nisms for a single node or two nodes in tandem. The scalability of our models
to multiple nodes in a network should be assessed with further work. This
study could be considerably complicated by the presence of multiple conges-
tion points in the network.

� Di¤erentiation in performance: Another very important area for future re-
search is the di¤erentiation in performance achieved by multiple customers.
In practice, di¤erent customers will have di¤erent bandwidth demands and
hence, a di¤erent SLA. The QoS mechanisms should not only ensure that the
guaranteed tra¢ c rates are met, but also that the left-over capacity is divided
fairly among all customers. This should ideally be done in proportion to their
contractual tra¢ c rates or in accordance with the billing or pricing strategies
of the service provider.

We would like to conclude with some �nal remarks on the possibility to exploit
the results of this thesis in practice. Although a topic more for development rather
than research, it is useful that our results be incorporated in a network design tool
to enable the operator to better plan his network. Some issues would have to be
resolved before this can be realized, for example, the estimation of certain input
parameter values in the proposed models and approximations. Furthermore, the
research items previously mentioned in this section, should �rst have been investi-
gated. The envisioned design tool could then be integrated with the management
plane or used stand-alone.

Samenvatting

Ethernet, dat was ontworpen voor LANs, evolueert momenteel naar een carrier-
grade technologie. Van dit zogenaamde �Carrier Ethernet� wordt verwacht dat
het aan de voornaamste tekortkomingen van het conventionele Ethernet in publieke
netwerken tegemoet kan komen. De visie is dat uiteindelijk Ethernet de services
van een netwerk op een end-to-end-basis verzorgt. Hierbij denkt men in het bijzon-
der aan de ondersteuning van zakelijke datanetwerken, breedbandige access en het
�backhaulen�van draadloos verkeer.

Met de opmars van Ethernet in het publieke domein speelt de kwaliteit van de
aangeboden diensten (de Quality of Service, of kortweg QoS) een steeds grotere
rol, in die zin dat het een onderscheidende factor tussen de verschillende dienstver-
leners wordt. De uitdaging is te voldoen aan de QoS-eisen van de applicaties (die
doorgaans zijn geformuleerd in termen van responstijden, throughput, vertraging en
jitter) door de netwerkresources adequaat in te zetten. Ethernet is in principe niet
ontworpen voor grote publieke netwerken, en het beschikt niet over direct toepas-
bare functionaliteit om QoS te bieden. In dit verband stellen wij in dit proefschrift
een aantal QoS-mechanismen voor en analyseren deze in kwantitatieve termen. Het
primaire doel hierbij is te komen tot mechanismen die een dienstverlener (netwerk
operator) in staat stellen te voldoen aan de kwaliteitseisen van huidige en toekom-
stige diensten.

In dit proefschrift hebben wij drie belangrijke QoS-mechanismen bekeken: polic-
ing, congestion control en scheduling van netwerkverkeer.

Policing is de eerste �horde�die het verkeer moet nemen wanneer het het op Ether-
net gebaseerde netwerk binnen komt. De taak van het policing mechanisme is het
inkomende verkeer te monitoren en te limiteren, zodat het voldoet aan de afspraken
die zijn vastgelegd in een verkeerscontract. Het is echter ook van groot belang om
het e¤ect van de policing methode op verschillende verkeerstypen te begrijpen. Wij
hebben aangetoond dat als policing wordt uitgevoerd zonder rekening te houden met
de kenmerken van de hogere-laag applicaties, de uiteindelijke throughput beduidend
lager kan zijn dan de in het contract overeengekomen �gegarandeerde�throughput.
In Deel I van dit proefschrift stellen wij twee policing-methodes voor en analyseren
deze; de eerste methode is gebaseerd op een waarschuwingssignaal dat het Ethernet
backpressure mechanisme uitzendt, en de tweede op een dynamische token bucket.

141

142 Samenvatting

Het waarschuwingssignaal naar de klant resulteert in verbeterde throughput voor
TCP-verkeer door het bu¤eren en het �gladstrijken�van het verkeer tot een gelijk-
matige stroom. Dit werkt goed voor UDP-verkeer als dit verkeerstype met prioriteit
wordt afgehandeld. De dynamische token bucket policer verbetert de performance
van TCP-verkeer door zich aan te passen aan verschillende verkeerspro�elen. De re-
sultaten geven aan dat in de meeste gevallen de dynamische bucket convergeert naar
de optimale token bucket, die speci�ek is voor het scenario dat beschouwd wordt.

Na het elimineren van de niet optimale interacties van het hogere laag verkeer
met een policer, hebben wij ons geconcentreerd op de congestieproblemen die kun-
nen ontstaan in nodes elders in het netwerk. Deze congestie kan veroorzaakt worden
door de inherent onvoorspelbare aard van het gebruikersverkeer, evenals het samen-
voegen van de verschillende verkeersstromen. In Deel II van het proefschrift hebben
wij het gebruik van feedback voor congestion control geanalyseerd, als manier om
deze congestie te beheersen. Een dergelijke feedback wordt gefaciliteerd door het
standaard IEEE 802.3x backpressure mechanisme of één van de alternatieven die
in de literatuur worden voorgesteld. De kracht van onze analyse ligt in het feit
dat wij inzichtelijke, analytische relaties bieden tussen de parameter instellingen
van het congestie detectie mechanisme aan de ene kant, en de performance van de
hogere laag applicaties aan de andere kant. De transfer tijd van een gegevensbe-
stand en de verwachte pakketvertraging voor real-time streaming applicaties kan
bijvoorbeeld, voor gegeven parameterwaarden, berekend worden. Door middel van
een uitvoerige en gedetailleerde numerieke studie van dit model, hebben wij pro-
cedures ontwikkeld waarmee de parameters gecon�gureerd kunnen worden, met als
doelstelling het gewenste compromis tussen de signalerings-frequentie, throughput
en vertraging te bereiken.

De kwesties op het gebied van policing en congestion control voor elastisch TCP
verkeer en streaming UDP verkeer zijn afzonderlijk behandeld in Deel I en II; de
integratie van deze twee verkeerstypen staat centraal in Deel III van dit proefschrift.
Daar beschouwen we een situatie waarbij elastisch verkeer een lagere prioriteit heeft
dan streaming verkeer en er op het streaming verkeer admission control wordt uit-
geoefend. De voorgestelde modellerings en analyse aanpak leidt, zoals gewenst, tot
relatief eenvoudige benaderingsformules voor het voorspellen van de performance
zoals die ervaren wordt door het elastische verkeer. De nauwkeurigheid van de be-
nadering wordt onderzocht voor verschillende waarden van de beschikbare capaciteit,
systeembelasting en de QoS-eisen van het streaming en elastisch verkeer. Voor alle
beschouwde scenario�s hebben wij aangetoond dat onze benadering een aanzienlijke
verbetering te zien geeft ten opzichte van de andere bekende benaderingen, zoals
een op quasi-stationariteit gebaseerde methode.

De onderzoeksresultaten uit dit proefschrift vormen een basis voor de ontwikkel-
ing van een tool voor netwerkontwerp, waarmee de operator zijn netwerk e¢ ciënt
kan plannen, en uitspraken kan doen over de geboden QoS. Een aantal kwesties
vragen dan eerst nog wel een oplossing, zoals de schatting van de waarden van de

143

input-parameters in de voorgestelde modellen en benaderingen. Een dergelijk tool
voor netwerkontwerp kan daarna in de management plane worden geïntegreerd, of
stand-alone worden gebruikt.

Acronyms

ABR Available Bit Rate

ACK Acknowledgement

AIMD Additive Increase Multiplicative Decrease

ATM Asynchronous Transfer Mode

CIR Committed Information Rate

CSMA/CD Carrier Sense Multiple Access with Collision Detection

ECN Explicit Congestion Noti�cation

GPS Generalized Processor Sharing

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

ISP Internet Service Provider

ITU International Telecommunications Union

LAN Local Area Network

MAC Medium Access Control

MAN Metropolitan Area Network

MEF Metro Ethernet Forum

MEN Metropolitan Ethernet Network

MPLS Multiprotocol Label Switching

MTU Maximum Transfer Unit

OAM Operation Administration and Management

145

146 Acronyms

PASTA Poisson Arrivals See Time Averages

PBS Peak Burst Size

PC Personal Computer

PIR Peak Information Rate

PQ Priority Queueing

PS Processor Sharing

QoS Quality of Service

RED Random Early Detection

RFC Request For Comments

RM Resource Management

RTT Round Trip Time

SDH Synchronous Digital Hierarchy

SLA Service Level Agreement

SONET Synchronous Optical Networking

STP Spanning Tree Protocol

TCP Transport Control Protocol

TDM Time Division Multiplexing

UDP User Datagram Protocol

VLAN Virtual Local Area Network

VoIP Voice over IP

VPN Virtual Private Network

WDM Wavelength Division Multiplexing

WFQ Weighted Fair Queueing

Bibliography

[1] The network simulator ns-2. http://www.isi.edu/nsnam/ns/.

[2] OMNeT++. http://www.omnetpp.org/.

[3] I. Adan, E. van Doorn, J. Resing, and W. Scheinhardt. Analysis of a single
server queue interacting with a �uid reservoir. Queueing Systems, 29:313�336,
1998.

[4] S. Ahn and V. Ramaswami. Steady state analysis of �nite �uid �ow models
using �nite QBDs. Queueing Systems, 49:223�259, 2005.

[5] D. Anick, D. Mitra, and M. Sondhi. Stochastic theory of a data-handling system
with multiple sources. Bell System Technical Journal, 61:1871�1894, 1982.

[6] F. Baccelli and D. Hong. The AIMD model for TCP sessions sharing a common
router. In Proceedings of the 39th Annual Allerton Conference on Communica-
tion, Control and Computing, 2001.

[7] R. Baumann and U. Fiedler. Why QoS will be needed in Metro Ethernets. In
Proceedings of the International workshop on Quality of Service 2005 (IWQoS),
pages 379�381, 2005.

[8] D. Bergamasco and R. Pan. Backward congestion noti�cation version 2.0. IEEE
802.1 Meeting, September 2005.

[9] T. Bonald and J. Roberts. Performance of bandwidth sharing mechanisms for
service di¤erentiation in the Internet. In Proceedings of the 13th ITC Specialist
Seminar on IP Tra¢ c Measurement, Modeling and Management, pages 22�1�
22�10, 2000.

[10] O. Boxma, H. Kaspi, O. Kella, and D. Perry. On/O¤storage systems with state
dependent input, output and switching rates. Probability in the Engineering and
Informational Sciences, 19:1�12, 2005.

[11] R. Cavendish. Operation, administration, and maintenance of Ethernet services
in wide area networks. IEEE Communication Magazine, 42(3):72�79, 2004.

147

148 BIBLIOGRAPHY

[12] Y-C. Chen and X. Xu. An adaptive bu¤er allocation mechanism for token
bucket �ow control. In Proceedings of the IEEE 60th Vehicular Technology
Conference (VTC), volume 4, pages 3020�3024, 2004.

[13] J.W. Cohen. The multiple phase service network with generalized processor
sharing. Acta Informatica, 12:245�284, 1979.

[14] J. Crowcroft and P. Oechslin. Di¤erentiated end-to-end Internet services using
a weighted proportional fair sharing TCP. Computer Communication Review,
28:53�69, 1998.

[15] A. da Silva Soares and G. Latouche. A matrix-analytic approach to �uid queues
with feedback control. International Journal of Simulation Systems Science and
Technology, 6:4�12, 2005.

[16] A. da Silva Soares and G. Latouche. Matrix-analytic methods for �uid queues
with �nite bu¤ers. Performance Evaluation, 63:295�314, 2006.

[17] F. Delcoigne, A. Proutière, and G. Régnié. Modelling integration of streaming
and data tra¢ c. Performance Evaluation, 55:185�209, 2004.

[18] V. Dumas, F. Guillemin, and P. Robert. A Markovian analysis of Additive-
Increase Multiplicative-Decrease (AIMD) algorithms. Advances in Applied
Probability, 34(1):85�111, 2002.

[19] S. Elby, H. Chamas, W. Bjorkman, and V. Alesi. Carrier Ethernet: A reality
check. In Optical Fiber Communication and the National Fiber Optic Engineers
Conference, OFC/NFOEC, pages 1�6, 2007.

[20] Metro Ethernet Forum (MEF). A global industry alliance. http://
metroethernetforum.org/.

[21] Metro Ethernet Forum (MEF). Certi�cation program. Available at, http:
//metroethernetforum.org/Certification.

[22] O. Feuser and A. Wenzel. On e¤ects of the IEEE 802.3x �ow control in full-
duplex Ethernet LANs. In Proceedings of the 24th Conference on Local Com-
puter Networks, page 160, 1999.

[23] V. Fineberg. QoS support in MPLS networks. MPLS/Frame Relay alliance
White Paper, 2003.

[24] W. Fischer and K. Meier-Hellstern. The Markov-modulated Poisson process
(MMPP) cookbook. Performance Evaluation, 18:149�171, 1993.

[25] S. Floyd. TCP and explicit congestion noti�cation. ACM Computer Commu-
nication Review, 24:10�23, 1994.

BIBLIOGRAPHY 149

[26] S. Floyd. A report on recent developments in TCP congestion control. IEEE
Communications Magazine, 39(4):84�90, 2001.

[27] S. Floyd and V. Jacobson. Congestion gateways for packet networks.
IEEE/ACM Transactions on Networking, 1:397�413, 1993.

[28] D. Gaver and J. Lehoczky. Channels that cooperatively service a data stream
and voice messages. IEEE Transactions on Communications, 30(5):1153�1162,
1982.

[29] A. Ge and G. Chiruvolu. Di¤Serv compatible extended pause (Di¤Pause) for
fair congestion control in Metro-Ethernet. In Proceedings of the IEEE Inter-
national Conference on Communications (ICC), volume 2, pages 1248�1252,
2004.

[30] M. Gribaudo and M. Telek. Fluid models in performance analysis. In Proceed-
ings of the 7th International School on Formal Methods for the Design of Com-
puter, Communication, and Software Systems, (SFM), pages 271�317, 2007.

[31] M. Gribaudo andM. Telek. Stationary analysis of �uid level dependent bounded
�uid models. Performance Evaluation, 65:241�261, 2007.

[32] J. Heinanen, T. Finland, and R. Guerin. The rate control RFC: RFC2698: A
two rate three color marker. IETF RFC2698, http://www.faqs.org/rfcs/
rfc2698.html, 1999.

[33] M. Howard. Metro Ethernet equipment biannual worldwide market forecast
and equipment: 1st edition. Market Report, April 2007.

[34] M. Howard. Service provider routers and switches: IP, Ethernet, and ATM.
Quarterly Market Report, May 2007.

[35] L. Hui-Lan and I. Faynberg. An architectural framework for support of quality
of service in packet networks. IEEE Communications Magazine, 41(6):98�105,
2003.

[36] J. Jiang and R. Jain. Analysis of Backward Congestion Noti�cation (BCN) for
Ethernet in datacenter applications. In Proceedings of the 26th IEEE Inter-
national Conference on Computer Communications, INFOCOM, pages 2456�
2460, 2007.

[37] J. Jiang and R. Jain. Forward Explicit Congestion Noti�cation (FECN) for
data center Ethernet networks. IEEE 802.1au, Interim meeting, Monterey,
CA, January 2007.

150 BIBLIOGRAPHY

[38] S. Jung, J. Kwak, and O. Byeon. Performance analysis of queue scheduling
mechanisms for EF PHB and AF PHB in Di¤serv networks. In Proceedings of
the 5th IEEE International Conference on High Speed Networks and Multimedia
Communications, pages 101�104, 2002.

[39] K. Kawahara, Y. Oie, M. Murata, and H. Miyahara. Performance analysis of
backpressure congestion control: preliminary case. IEEE GLOBECOM, 1:304�
309, 1995.

[40] J. Kidambi, D. Ghosal, and B. Mukherjee. Dynamic Token Bucket (DTB): a
fair bandwidth allocation algorithm for high-speed networks. Journal of High
Speed Networks, 9(2):67�87, 2000.

[41] L. Kosten. Stochastic theory of a data handling systems with groups of multiple
sources. Performance of Computer Communication Systems, pages 321�331,
1984.

[42] S. Kumar and L. Massoulié. Integrating streaming and �le-transfer Internet
tra¢ c: �uid and di¤usion approximations. Queueing Systems: Theory and
Applications, 55(4):195�205, 2007.

[43] M. MacFarland, S. Salam, and R. Checker. Ethernet OAM : key enabler for car-
rier class Metro Ethernet services. IEEE Communication Magazine, 43(11):152�
157, 2005.

[44] R. Malhotra, M.R.H. Mandjes, W.R.W. Scheinhardt, and J.L. van den Berg.
Design issues of a backpressure based congestion control mechanism. Submitted,
2008.

[45] R. Malhotra, M.R.H. Mandjes, W.R.W. Scheinhardt, and J.L. van den Berg. A
�uid queue with two congestion control thresholds. To appear in: Mathematical
Methods of Operations Research, 2008.

[46] R. Malhotra and J.L. van den Berg. Flow level performance approximations for
elastic tra¢ c integrated with prioritized stream tra¢ c. In Proceedings of the
12th International Telecommunications Network Strategy and Planning Sympo-
sium, NETWORKS, pages 1�9, 2006.

[47] R. Malhotra, R. van Haalen, R. de Man, and M. van Everdingen. Managing
service level agreements in Metro Ethernet networks using backpressure. Bell
Labs Technical Journal, 8(2):83�95, 2003.

[48] R. Malhotra, R. van Haalen, M.R.H. Mandjes, and R. Núñez-Queija. Modeling
the interaction of IEEE 802.3x �ow control and TCP end-to-end �ow control. In
Proceedings of Euro NGI 1st Conference on Next Generation Internet Networks:
Tra¢ c Engineering, pages 260�267, 2005.

BIBLIOGRAPHY 151

[49] M. Mandjes, D. Mitra, and W. Scheinhardt. Models of network accesssing
feedback �uid queues. Queueing Systems, 44:365�398, 2003.

[50] G. McAlpine, M. Wadekar, T. Gupta, A. Crouch, and D. Newell. An architec-
ture for congestion management in Ethernet clusters. In Proceedings of the 19th
IEEE International Parallel and Distributed Processing Symposium (IPDPS�05)
- Workshop 9, page 211.1, 2005.

[51] D. Mendes, K. Fonseca, and C.M. Pedroso. Bandwidth fairness of a single
rate three color marker algorithm implementation. In Proceedings of the 8th
International Conference on Communication Systems (ICCS), pages 609�611,
2002.

[52] P. Mishra and H. Kanakia. A hop by hop based congestion control scheme.
In Proceedings of Communications Architectures and Protocols, pages 112�123,
1992.

[53] R. Núñez-Queija. Sojourn times in a processor sharing queue with service
interruptions. Queueing Systems, 34:351�386, 2000.

[54] R. Núñez-Queija, H. van den Berg, and M. Mandjes. Performance evaluation
of strategies for integration of elastic and stream tra¢ c. In Proceedings of ITC
16, Edinburgh, pages 1�17, 1999.

[55] W. Noureddine and F. Tobagi. Selective back-pressure in switched Ethernet
LANs. In Proceedings of IEEE GLOBECOM, pages 1256�1263, 1999.

[56] W. Noureddine and F. Tobagi. Selective back-pressure in switched Ethernet
LANs. In Proceedings of the Global Telecommunications Conference 2, GLOBE-
COM, pages 1256�1263, 1999.

[57] C.G. Omidyar and G. Pujolle. Guest editorial - Introduction to �ow and con-
gestion control. IEEE Communications Magazine, 34(11):30�32, 1996.

[58] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP throughput: A
simple model and its empirical validation. In Proceedings of ACM SIGCOMM,
pages 303�314, 1998.

[59] C.M. Pazos and M. Gerla. A rate based backpressure �ow control for the
Internet. In Proceedings of High Performance Networking (HPN), pages 555�
573, 1998.

[60] C.M. Pazos, J.C. Sanchez-Agrelo, andM. Gerla. Using back-pressure to improve
TCP performance with many �ows. In Proceedings of IEEE INFOCOM, pages
431�438, 1999.

152 BIBLIOGRAPHY

[61] K. Perumalla. Libsynk. http://www.cc.gatech.edu/fac/kalyan/libsynk.
htm.

[62] J.B. Pipas, I.S. Venieris, and J.-A. Sanchez-Papaspiliou. On the extension of
ABR �ow control to legacy LANs. In Proceedings of the IEEE International
Conference on Communications (ICC), pages 832�837, 1997.

[63] B. Rahemi, G. Chiruvolu, A. Ge, and M. Ali. Metro Ethernet quality of services.
Alcatel Telecommunications Review, December,2004.

[64] K. Ramanan and A. Weiss. Sharing bandwidth in ATM. Proceedings of the
Allerton Conference, pages 732�740, 1997.

[65] ITU-T Recommendations. Y.1731, OAM functions and mechanisms for Ether-
net based networks. 2006.

[66] J.F. Ren and R. Landry. Flow control and congestion avoidance in switched
Ethernet LANs. In Proceedings of the IEEE International Conference on Com-
munications (ICC), pages 508�512, 1997.

[67] J. Roberts. Engineering for Quality of Service. Chapter 16, Wiley-Interscience,
UK, 2000.

[68] J.W. Roberts and L. Massoulié. Bandwidth sharing and admission control for
elastic tra¢ c. In Proceedings of the ITC Specialist Seminar, Yokohama 1998.

[69] L. Rogers. Fluid models in queueing theory and Wiener-Hopf factorization of
Markov chains. Annals of Applied Probability, 4:390�413, 1994.

[70] S. Sahu, P. Nain, D. Towsley, C. Diot, and V. Firoiu. On achievable service
di¤erentiation with token bucket marking for TCP. In Proceedings of the 2000
ACM SIGMETRICS International Conference on Measurement and Modeling
of Computer Systems, pages 23�33, 2000.

[71] S. Salam and A. Sajassi. Provider backbone bridging and MPLS: complemen-
tary technologies for next-generation carrier Ethernet transport. IEEE Com-
munications Magazine, 46(3):77�83, 2008.

[72] W. Scheinhardt, N. van Foreest, and M. Mandjes. Continuous feedback �uid
queues. Operations Research Letters, 33:551�559, 2005.

[73] IEEE Std 802.1ad 2005. IEEE standard for local and metropolitan area net-
works - virtual bridged local area networks, amendment 4: Provider bridges.
IEEE Std 802.1ad-2005 (Amendment to IEEE Std 802.1Q-2005), 2005.

[74] IEEE Std 802.1D 2004. IEEE standard for local and metropolitan area networks
- Media Access Control (MAC) bridges. Revised version incorporating existing
published amendments 802.1t and 802.1w, 2004.

BIBLIOGRAPHY 153

[75] IEEE Std 802.1Q 2005. IEEE standard for local and metropolitan area networks
- virtual bridged local area networks �revision. 2005.

[76] IEEE Std 802.3. Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) access method and physical layer speci�cation. Annex 31 B, 1998
Edition.

[77] R.W. Stevens. TCP/IP Illustrated. Addison-Wesley, 1994.

[78] H.C. Tijms. Stochastic Modeling and Analysis. Wiley, New York, 1986.

[79] R. van der Mei, J.L. van den Berg, R. Vranken, and B.M.M. Gijsen. Sojourn
times approximations for a multi-server processor sharing systemwith priorities.
Performance Evaluation, 54:249�261, 2003.

[80] E. van Doorn, A. Jagers, and J. de Wit. A �uid reservoir regulated by a birth
death-process. Stochastic Models, 4:457�472, 1988.

[81] M. van Everdingen. Method and device for controlling source speci�c data �ow.
European Patent EP1187399.

[82] N. van Foreest, M. Mandjes, and W. Scheinhardt. A versatile model for
asymmetric TCP sources. In Proceedings of the 18th International Teletraf-
�c Congress, pages 631�640, 2000.

[83] R. van Haalen and R. Malhotra. Improving TCP performance with bu¤erless
token bucket policing: A TCP friendly policer. In Proceedings of the 15th IEEE
workshop on Local and Metropolitan Area Networks (LANMAN), pages 72�77,
2007.

[84] R. van Haalen, R. Malhotra, and A. de Heer. Optimized routing for provid-
ing Ethernet LAN services. IEEE Communications Magazine, 43(11):158�164,
2005.

[85] J. Wechta, A. Eberlein, and F. Halsall. The interaction of the TCP �ow control
procedure in the end nodes on the proposed �ow control mechanism for use in
IEEE 802.3x switches. In Proceedings of the Eigth IFIP Conference on High
Performance Networking (HPN), pages 515�534, 1998.

[86] J. Wechta, M. Fricker, and F. Halsall. Hop-by-hop �ow control as a method to
improve QoS in 802.3 LANs. In Proceedings of the IEEE/IFIP International
Workshop on Quality of Service (IWQoS), pages 239�247, 1999.

[87] Y.R. Yang and S.S. Lam. General AIMD congestion control. In Proceedings of
the International Conference on Network Protocols, pages 187�198, 2000.

154 BIBLIOGRAPHY

[88] S.F. Yashkov. Processor-sharing queues: some progress in analysis. Queueing
Systems, 2(1):1�17, 1987.

[89] S.F. Yashkov. Mathematical problems in the theory of processor-sharing queue-
ing systems. Journal of Soviet Mathematics, 58:101�147, 1992.

[90] I. Yeom and A.L. Narasimha Reddy. Realizing throughput guarantees in a
di¤erentiated services network. In Proceedings of the IEEE International Con-
ference on Multimedia and Computing Systems, pages 372�376, 1999.

Publications and patents by the
author

Publications

� R. Malhotra, M.R.H. Mandjes, W.R.W. Scheinhardt, J.L. van den Berg, �De-
sign issues of a Ethernet backpressure �ow control mechanism�. Submitted,
2008.

� R. Malhotra, M.R.H. Mandjes, W.R.W. Scheinhardt, J.L. van den Berg, �A
feedback �uid queue with two congestion control thresholds�. To appear in
Mathematical Methods of Operations Research, 2008.

� R. Malhotra, M.R.H. Mandjes, W.R.W. Scheinhardt, J.L. van den Berg, �A
feedback �uid queue with two congestion control thresholds�. Presented at
the Fourteenth INFORMS Applied Probability Conference, July 2007.

� R. van Haalen, R. Malhotra, �Improving TCP performance with a dynamic
token bucket policer: A TCP friendly policer�. In Proceedings of the 15th
IEEE Workshop on Local and Metropolitan Area Networks, LANMAN, 2007.

� R. Malhotra, J.L. van den Berg, �Flow level performance approximations for
elastic tra¢ c integrated with prioritized stream tra¢ c�. In Proceedings of
the 12th International Telecommunications Network Strategy and Planning
Symposium, Networks, 2006, pp 1-9.

� R. van Haalen, R. Malhotra, A. de Heer, �Optimized routing of Ethernet LAN
services�. IEEE Communications Magazine, vol 43 (11), 2005, pp 158-164.

� R. Malhotra, R. van Haalen, M.R.H. Mandjes, R. Núñez Queija, �Modeling
the interaction of IEEE 802.3x �ow control and TCP end-to-end �ow control�.
In Proceedings of Euro NGI 1st Conference on Next Generation Internet Net-
works: Tra¢ c Engineering, Rome, April 2005, pp 260-267.

155

156 Publications and Patents by the Author

� R.Malhotra, R. van Haalen, R. de Man, M. van Everdingen, �Managing service
level agreements in Metro Ethernet networks using backpressure�. Bell Labs
Technical Journal, vol 8(2), 2003, pp 83-95.

� R. van Haalen, R. Malhotra, R. de Man, M. van Everdingen, �Back-pressure
based tra¢ c policing mechanism for Metro Ethernet networks�. In Proceed-
ings of the 12th IEEE Workshop on Local and Metropolitan Area Networks,
LANMAN, Stockholm, August 2002, pp 217-220.

� R. Malhotra, D. Dey, E.A. van Doorn, A.M.J. Koonen, �Tra¢ c modeling in
a recon�gurable broadband nomadic computing environment�. Performance
Evaluation, vol 47, 2002, pp 255-267.

� R. Malhotra, P. Busch, �Dynamic channel selection for wireless LANs�. In
Proceedings of the Joint International Conference onWireless LANs and Home
Networks (ICHLWN 2002) and Networking (ICN 2002), Networks, August
2002, pp 3-14.

� R. Malhotra, D. Dey, E.A. van Doorn, A.M.J. Koonen, � Tra¢ c modelling in a
recon�gurable broadband nomadic computing environment�. In Proceedings
of SPIE 4211, Internet Quality and Control of Network Systems, Nov 2000,
pp 82-92.

Patents issued

� R. Malhotra, P. Busch, �Dynamic channel selection for wireless LANs�, United
States patent 20020181417.

� P. Busch, R. Malhotra, �Channel swapping for wireless LANs�, United States
patent 20020176437.

� P. Busch, R. Malhotra, �Corrected predictions based dynamic frequency se-
lection�, European patent EP1257091.

� A. de Heer, S. Roijakkers, R. Malhotra, R. de Man, �Method for establishing a
loop-free path for transfer of data packets within a circular network�, European
patent EP1359715.

Patents pending

� R. Malhotra, �Controlling congestion in a packet switched data network�.
Patent application �led 12/06/2007.

157

� R. Malhotra, �Method and apparatus for �ow control of data in a network�.
Patent application �led 03/23/2005.

� R. van Haalen, R. Malhotra, �Method for dynamically adjusting token bucket
sizes�. Patent application �led 09/30/2005.

� R. Malhotra, R. van Haalen, �Method for policing-based adjustments to trans-
mission window size�. Patent application �led 09/30/2005.

� J. van Bemmel, A. de Heer, R. Malhotra, �Congestion control for improved
management of service level agreements in switched networks�. Patent appli-
cation �led 11/02/2004.

� R. Malhotra, N. van Foreest, �A fast converging spanning tree protocol for
LAN VPNs�, Patent application �led 01/16/2002.

